期刊文献+

基于多尺度谱熵的气液两相流型动力学特性分析 被引量:2

Dynamic characteristics analysis of gas/liquid two-phase flow regimes based on multiscale spectrum entropy
原文传递
导出
摘要 为了准确分析气液两相流流型的复杂性及其动力学行为,通过计算多尺度谱熵,从频域的角度分析气液两相流在各个尺度下的复杂性及动力学特性。首先分析了几种典型信号的多尺度谱熵特征,并验证了多尺度谱熵算法的可行性以及对噪声的鲁棒性,在此基础上计算了气液两相流泡状流、塞状流及弹状流3种典型流型的多尺度谱熵值,分析了流型频域复杂性演变规律以及相应尺度下的动力学特性。实验结果表明:具有随机性的泡状流的多尺度谱熵最高;而塞状流由于气塞与液塞的交替运动导致多尺度谱熵最低,弹状流的多尺度谱熵居于泡状流和塞状流之间。在第1至第4尺度,3种流型的谱熵变化迅速,且塞状流的谱熵值与弹状流接近,反映出3种流型的微观动力学特性;而在第4尺度后3种流型的谱熵值波动较小,反映出各个流型的宏观特性。因此,多尺度谱熵可定量刻画气液两相流型的频域复杂性,谱熵的变化可以很好的指示流型动力学行为的演变,有助于进一步理解流型演化机理;此外,多尺度谱熵相较传统的时域熵分析方法,计算速度快,计算复杂度低,为两相流流型在线识别及信息的即时处理提供一种新途径。 To accurately analyze the complexity and dynamical behaviors of gas/liquid two-phase flow regimes, the gas-liquid two-phase flow experiments for measuring the time series of flow signals were systematically carried out in a 50 mm inner-diameter horizontal pipe, which were studied by multiscale spectral entropy combined with multiscale analysis method and Fourier transform in frequency domain. Firstly, examples using time series from classical systems were provided to demonstrate the effectiveness and robust of our approach. Based on the above studies, the spectral entropies of three flow regimes (bubble flow, plug flow and slug flow) were calculated with conductance fluctuating signals from the first scale to the fiftieth scale. The experimental results indicated that the fluctuation of spectral entropy of each scale reflected the dynamic characteristics and complexity of each flow regime from a frequency domain perspective. Bubble flow with stochastic characteristic was shown higher; Plug flow was represented lower because of the intermittence of gas and liquid slug; the unstable characteristics of slug flow behaved as the spectral entropy between bubble flow and plug flow, and the spectral entropy closed to that of plug flow at the 1-4 scales. Furthermore, the spectral entropy of three flow regimes changed fast at 1-4 scales and then varied slightly at subsequent scales, which indicated that the frequency components of three flow regimes at small scales were more complex compared with those at larger scales. These interesting and significant findings suggest that multiscale spectral entropy can be used as quantitative parameters for measuring frequency domain complexity of gas/liquid two-phase flow regimes. In addition, multiscale spectral entropy, which has merits of less computation time and low arithmetic complexity, is helpful in engineering application and understanding the dynamic characteristics of flow regime transition.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2014年第1期5-9,共5页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(61227006和51176141) 天津市自然科学基金资助项目(11JCZDJC22500)
关键词 谱熵 多尺度 气液两相流 流型 动力学特性 spectral entropy multiscale gas/liquid two-phase flow flow regime dynamic characteristic
  • 相关文献

参考文献6

二级参考文献76

共引文献131

同被引文献23

  • 1ZHANG Z Y, SHI L. Shannon entropy characteristics of two-phase flow systems[ J]. Journal of Applied Physics, 1999,85( 11 ) :7544-7551.
  • 2WANG Q, WANG H X, HAO K I-I, et al. Two-phase flow regime identification based on cross-entropy and informa- tion extension methods for computerized tomography [ J ].IEEE Transactions on Instrumentation & Measurement, 2011,60(2) :488- 495.
  • 3BARSKY E M. Entropy of two-phase flows in the mode of separation [ J ]. Journal of Mining Science, 2013,49 ( 2 ) : 308-318.
  • 4TAN CH, ZHAO J, DONG F. Gas-water two-phase flow characterization with electrical resistance tomography and multivariate multiscale entropy analysis [ J ]. ISA Transac- tions, 2015,55:241-249.
  • 5YILDIZ A, AKIN M, POYRAZ M, et al. Application of adaptive neuro-fuzzy inference system for vigilance level es- timation by using wavelet-entropy feature extraction[J]. Ex- pert Systems with Applications,2009,36(4):7390-7399.
  • 6MUTHUSWAMY J, THAKOR N V. Spectral analysis methods for neurological signals [ J ]. Journal of Neuro- science Methods, 1998,83 ( 1 ) : 10-14.
  • 7ROSSO O A, BLANCO S, YORDANOVA J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals [ J ]. Journal of Neuroscience Methods, 2001 , 105( 1 ) : 65-75.
  • 8COSTA M,GOLDBERGER A L, PENG C K. Muhiseale entropy analysis of biological signals [ J ]. Physical Re- view E ,2005,71 (2) :021906(p18).
  • 9周云龙,陈飞.水平气液两相流流型空间图像信息复杂性测度分析[J].化工学报,2008,59(1):64-69. 被引量:14
  • 10孙志强,周宏亮,植晓琴,周孑民,张宏建.管内气液两相流涡街稳定性分析[J].中南大学学报(自然科学版),2008,39(6):1164-1169. 被引量:8

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部