摘要
碳足迹是指由企业、组织或个人引起的碳排放的集合。参照PAS2050规范并结合生命周期评价方法对上海市水稻生产进行了碳足迹评估。结果表明:(1)目前上海市水稻生产的碳排放为11.8114 t CO2e/hm2,折合每吨水稻生产周期的碳足迹为1.2321 t CO2e;(2)稻田温室气体排放是水稻生产最主要的碳排放源,每吨水稻生产的总排放量为0.9507 t CO2e,占水稻生产全部碳排放的77.1%,其中甲烷(CH4)又是最主要的温室气体,对稻田温室气体碳排放的贡献率高达96.6%;(3)化学肥料的施用是第二大碳排放源,每吨水稻生产的总排放量为0.2044 t CO2e,占水稻生产总碳排放的16.5%,其中N最高,排放量为0.1159 t CO2e。因此,上海低碳水稻生产的关键在降低稻田甲烷的排放,另外可通过提高氮肥利用效率,减少氮肥施用等方法减少种植过程中碳排放。
Global climate change has become an urgent issue of concern. Climate change will increasingly threaten our food production, security and even the survival of the human race. It also has a serious impact on natural ecosystems and the socioeconomic system. With the increasing scale and improvement in mechanization levels, the economic linkage between agricultural production and reduction of Greenhouse Gas (GHG) emissions is even closer in the agricultural production system. Therefore, the development of a low-carbon agricultural model is one of the long-term strategies for low-carbon economic growth throughout the country. This research of carbon footprint is introduced to measure the GHG emission over the rice production cycle. The carbon footprint can be defined as the total carbon emissions caused by an organization, event, product or person. At present, carbon footprints are used to measure GHG emissions in products, services, organizations, cities and countries and offer the decision basis for the formulation of GHG emission reduction schemes. Agricultural ecological systems, every year, also produce a lot of GHG emissions. The whole process of prenatal, intrapartum and postpartum agricultural production are closely related to energy consumption and GHG emission. In the process, all the agricultural inputs, such as chemical fertilizers, pesticides, seeds, cultivation, plant protection, agricultural machinery, irrigation and harvest also produce greenhouse gas emissions. The whole cultivation of rice involves methane ( CH4 ) emission. This study shows that rice cultivation is one of the biggest sources of GHG emissions in crop cultivation. Rice paddies emit a large amount of methane in their water loggedmode. Different irrigation modes have a great influence on the emission of GHG. Straw return is another factor that promotes GHG emissions. Soil organic content increases with the return of straw, with an increase in the soil methanogen activity, leading to increased methane emissions. The current carbon footprint research is the first time it has been used to measure the carbon emissions involved in rice production. The carbon footprint for rice production in Shanghai was assessed by the PAS2050 paradigm and life cycle assessment. The study area, located in Changjiang Farm, which belongs to the Guangming Group in Chongming County Shanghai City atlatitude 121°32′22″ E, longitude31°40′23″ N. Chongming County, in the Yangtze River Estuary, is a typical sub tropical monsoon climate with mild climate, abundant rainfall, annual average temperatures of 15.3 ℃, and annual precipitation of 1245 mm. It is the major grain production base for Shanghai city with winter wheat and summer rice forming their main planting patterns, which are typical for the middle and lower reaches of the Yangtze River rice-wheat rotation cropping pattern. The entire carbon emission of rice production in Shanghai was 11.8114 t COze (CO2-equivalents)/hm2, corresponding to a 1.2321 t CO2e/t rice grain yield. GHG emissions from paddy fields were the major source, which emitted 0.9507 t CO2e/t rice and accounted for 77.1% of total carbon emissions during rice production. Moreover, CH4was the largest source for GHG emissions with a contribution rate of 96.6%.Chemical fertilizers were the second largest emission source in rice production. Chemical fertilizers emitted 0.2044 t CO2e for each ton of rice production, contributing 16.5% of total carbon emissions in rice production. N fertilizer was the biggest emission source, which released 0.1159 t CO2e/t rice. This research investigates the GHG emissions over the whole process of the Shanghai rice production cycle and reveals the energy consumption and GHG emissions in rice production. Thus, a rice carbon footprint is calculated by assessing the GHG emissions in Shanghai rice production. The results are beneficial for producing reduction plans of reducing GHG emissions in Shanghai rice production. Furthermore, the results will supply both practicable and theoretical foundations for drafting carbon footprint formulations in other industrial areas.
出处
《生态学报》
CAS
CSCD
北大核心
2014年第2期491-499,共9页
Acta Ecologica Sinica
基金
国家科技部支撑计划后世博专项资助项目(2010BAK69B18)
上海市科委崇明科技攻关专项资助项目(10DZ1960101)
关键词
水稻
碳足迹
温室气体
生命周期评价
rice
carbon footprint
greenhouse gas
life cycle assessment