期刊文献+

一种模糊对象的极大co-location模式挖掘算法 被引量:1

Algorithm of Mining Maximal Co-location Patterns for Fuzzy Objects
下载PDF
导出
摘要 空间co-location模式表示的是空间对象的实例在一个相同的区域内频繁地进行空间并置。人们已经对确定和不确定数据co-location模式挖掘做了很多工作,也有很多成果,但对极大co-location模式挖掘研究较少,特别是针对模糊对象的极大co-location模式挖掘研究还未见报道。提出Mevent-tree算法来挖掘模糊对象的极大co-location模式,首先为每个对象构建空间对象树,从而得到候选模式,然后为候选模式集构建HUT树,最后在HUT树中从阶数最大的候选模式开始到阶数2为止,深度优先搜索极大co-location模式并在得到极大模式后对HUT树剪枝。接着提出两个改进算法,包括预处理阶段模糊对象的剪枝算法和在构造HUT树之前co-location候选模式的剪枝算法。最后通过大量实验验证了Mevent-tree算法和改进算法的效果和效率。 A spatial co-location pattern is a group of spatial objects whose instances are frequently located m me same region. There are lots of jobs and achievements of co-location patterns mining algorithrns for certain and uncertain data, but less maximal co-location patterns mining algorithms, especially spatial maximal co-location patterns for fuzzy ob- jects. Mevent-tree algorithm was proposed in this paper for mining maximal co-location patterns for fuzzy ohiects. First- ly,it builds a event tree which can get candidate patterns for each object, build the HUT tree of candidate patterns, and then depth-first searches maximal co-location patterns begining with maximal-size candidate patterns and ending to size- 2 candidate patterns in HUT tree, as well pruning co-location candidate patterns after geting maximal co-location pat-terns. Then we put forward two improved strategies, including the pruning fuzzy objects during preprocessing and the pruning co-location candidates before creating HUT trees. Finally, extensive experiments show the effectiveness and efficiency of Mevent-tree algorithm and its improved methods.
出处 《计算机科学》 CSCD 北大核心 2014年第1期138-145,共8页 Computer Science
基金 国家自然科学基金资助项目(61063008 61272126 61262069) 云南省应用基础研究基金项目(2010CD025) 云南省教育厅基金项目(2012C103)资助
关键词 模糊对象 极大co-location模式挖掘 模糊参与率 Fuzzy objects, Maximal co-location pattern mining,Fuzzy participation ratio
  • 相关文献

参考文献14

  • 1王丽珍,周丽华,陈红梅,等.数据仓库与数据挖掘原理及应用(第二版)[M].北京:科学出版社,2009.
  • 2Huang Y, Shekhar S, Xiong H. A general approach Discovering colocation patterns from spatial data sets[J]. IEEE Transactions on Knowledge and Data Engineering,2004,16(12):1472-1485.
  • 3Yoo J S, Shekhar S. A partial join approach for mining co-loca- tion pattems[C]//ACM International Symposium on Advances in Geographic Information Systems (ACMGIS). Washington, USA, 2004: 241-249.
  • 4Yoo J S, Shekhar S, Celik M. A join-less approach for co-location pattern mining[J]. A Summary of Results IEEE International Conference on Data Mining(ICDM), Houston, USA, 2005: 813- 816.
  • 5Wang Li-zhen, Bao Yu-zhen, Lu J, et al. A new join-less ap proaeh for co-location pattern mining[C]//Proceedings of the IEEE 8th International Conference on Computer and Informa- tion Technology (CIT 2008). Sydney, Australia, 2008 : 197-202.
  • 6Wang Li-zhen, Zhou Li-hua, Lu J, et al. An order-clique-based approach for mining maximal co-locations[J]. Inforrr:tion Scien- ces, 2009,179 (19) : 3370-3382.
  • 7陆叶,王丽珍,张晓峰.从不确定数据集中挖掘频繁Co-location模式[J].计算机科学与探索,2009,3(6):656-664. 被引量:20
  • 8Wang Li-zhen, Chen Hong-mei, Zhao Li-hong, et al. Efficiently mining co-location rules on interval data[C]//Proceedings of the 6th Int Conf on Advanced Data Mining and Applications (ADMA 2010). Chongqing, China, Part I, LNCS 6440, 2010: 477-488.
  • 9Altman D. Fuzzy set theoretic approaehes for handling impre- cision in spatial analysis [J]. International Journal of Geographi-cal Information Science, 1994,8(3) : 271-289.
  • 10Zheng Kai, Fung Pui-cheong, Zhou Xiao-fang. K-nearest neigh- bor search for fuzzy obiects[C]//Proceedings of the Special In- terest Group on Management of Data (SIGMOD'10). Indiana, USA, 2010 : 699-710.

二级参考文献38

  • 1Shekhar S, Chawla S. Spatial databases: A tour[M]. [S.l.]: Prentice Hall, 2003.
  • 2Shekhar S, Huang Y. Co-location rules mining: A summary of results[C]//Proc of International Symposium on Spatio and Temporal Database (SSTD), 2001.
  • 3Huang Y, Shekhar S, Xiong H. Discovering colocation patterns from spatial data sets: A general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004,16(12): 1472-1485.
  • 4Yoo J S, Shekhar S, Celik M. A Join-less approach for colocation pattern mining: A summary of results[C]//Proc of the 5th IEEE Int Conf on Data Mining, ICDM 2005, Houston, Nov, 2005 : 813-816.
  • 5Yoo J, Shekhar S. A partial join approach for mining co-location patterns[C]//Proc of ACM International Symposium on Advances in Geographic Information Systems (ACM-GIS), 2004.
  • 6Wang L, Bao Y, Lu J, et al. A new join-less approach for colocation pattern mining[C]//Proceedings of the IEEE 8th International Conference on Computer and Information Technology (CIT2008), Syney, Australia, 2008: 197-202.
  • 7Wang Lizhen, Bao Yuzhen, Lu Zhongyu. Efficient discovery of spatial co-location patterns using the iCPI-tree[J]. The Open Information Systems Journal, 2009,3 : 69-80.
  • 8Wang Lizhen, Zhou Lihua, Lu Joan, et al. An order-cliquebased approach for mining maximal co-locations[J]. Information Sciences, 2009, 179:3370-3382.
  • 9Kao B, Lee S D, Cheung D W, et al. Clustering uncertain data using voronoi diagrams[C]//Sth IEEE International Conference on Data Mining, ICDM'08, Pisa, 15-19 Dec, 2008:333-342.
  • 10Chau M, Cheng R, Kao B, et al. Uncertain data mining: An example in clustering location data[C]//the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, 9-12 Apt, 2006 : 199-204.

共引文献35

同被引文献15

  • 1王新洲.论空间数据处理与空间数据挖掘[J].武汉大学学报(信息科学版),2006,31(1):1-4. 被引量:15
  • 2SHEKHAR S, HUANG Y. Discovering spatial co-location patterns:a summary of results[C]//Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases. London:Springer-Verlag, 2001:236-256.
  • 3HUANG Y, XIONG H, SHEKHAR S, et al. Mining confident co-location rules without a support threshold[C]//Proceedings of the 2003 ACM Symposium on Applied Computing. New York:ACM,2003:497-501.
  • 4HUANG Y, SHEKHAR S, XIONG H. Discovering co-location patterns from spatial data sets:a general approach[J]. IEEE Transactions on Knowledge & Data Engineering, 2004, 16(12):1472-1485.
  • 5YOO J S, SHEKHAR S, SMITH J, et al. A partial join approach for mining co-location patterns[C]//Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems. New York:ACM, 2004:241-249.
  • 6YOO J S, SHEKHAR S, CELIK M. A join-less approach for co-location pattern mining:a summary of results[C]//Proceedings of the 5th IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2005:813-816.
  • 7ZHENG K, FUNG P C, ZHOU X. K-nearest neighbor search for fuzzy objects[C]//Proceedings of the 2010 ACM International Conference on Special Interest Group on Management of Data. New York:ACM, 2010:699-710.
  • 8WANG L, CHEN H, ZHAO L, et al. Efficiently mining co-location rules on interval data[C]//Proceedings of the 6th International Conference on Advanced Data Mining and Applications. Berlin:Springer-Verlag, 2010:477-488.
  • 9QIAN F, CHIEW K, HE Q, et al. Mining regional co-location patterns with kNNG[J]. Journal of Intelligent Information Systems, 2013, 42(3):485-505.
  • 10FENWICK K D, MORRONGIELLO B A. Spatial co-location and infants' learning of auditory-visual associations[J]. Infant Behavior & Development, 1998, 21(4):745-759.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部