期刊文献+

基于BoF模型的图像表示方法研究 被引量:12

Study of BoF Model Based Image Representation
下载PDF
导出
摘要 设计合适的图像表示是计算机视觉中最重要的问题之一。BoF特征表示方法非常流行,已经广泛应用于图像分类、对象识别、图像检索、机器人定位和纹理识别。BoF特征是将图像表示为无序的特征集合。这种方法虽然缺乏结构信息和空间信息,但概念简洁、计算简单,在某些应用上取得的效果甚至可以与当前最好的方法媲美。仔细研究了BoF模型,着重对BoF模型中的3个阶段:局部特征提取、特征量化和编码、特征汇集所涉及到的典型技术进行了讨论。最后在分析各类研究方法的基础上,总结了目前研究存在的问题及可能的发展方向。 Designing a suitable image representation is one of the most fundamental issues of computer vision. BoF model is very popular and used extensively in image classification,video search, robot localization and texture recognition. BoF feature is an orderless collection of quantized local image descriptors. While this feature representation discards structural and spatial information,B oF model is conceptually and computationally simple, even as good as stateof the- art methods. Three steps in the popular BoF were studied in detail, including feature extraction, feature coding and fea- ture pooling. In the end, the main problems and challenges were highlighted based on analysis of current research tech- nique.
出处 《计算机科学》 CSCD 北大核心 2014年第2期36-44,共9页 Computer Science
基金 国家自然科学基金项目(60905028 61033013) 北京市自然科学基金(4112046) 北京联合大学"新起点"项目(ZK201211)资助
关键词 特征包 局部特征 特征量化 特征汇集 计算机视觉 BoF, Local features, Feature quantization, Feature pooling, Computer vision
  • 相关文献

参考文献1

二级参考文献10

  • 1Hester C F, Casasent D. Multivariant technique for multiclass pattern recognition [J]. Applied Optics, 1980, 19(11): 1758-1761.
  • 2Xie C, Savvides M, Kumar B V K V. Redundant classdependence feature analysis based on correlation filters using FRGC2.0 data[A]. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C]. Los Alamitos, CA, USA: IEEE Computer Society, 2005. 153.
  • 3Turk M A, Pentland A E Face recognition using eigenfaces [A] Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Los Alamitos, CA USA: IEEE Computer Society, 1991. 586-591.
  • 4Belhumeur P N, Hespanha J E Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 5Wiskott L, Fellous J M, Kruger N, et al. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775-779.
  • 6Liu C, Wechsler H. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition [J]. IEEE Transactions on Image Processing, 2002, 11 (4): 467-476.
  • 7Yang P, Shan S, Gao W, et al. Face recognition using Adaboosted Gabor features[A]. Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition [C]. Los Alamitos, CA, USA: IEEE Computer Society, 2004. 356-361.
  • 8Savvides M, Kumar B V K V, Khosla E Face verification using correlation filters [EB/OL]. http://www.ece.cmu.edu/-kumar/Biometrics_AutoID.pdf, 2002/2008.
  • 9Kumar B V K V, Savvides M, Xie C. Correlation pattern recognition for face recognition [J]. Proceedings of the IEEE, 2006, 94(11): 1963-1976.
  • 10Kumar B V K V. Tutorial survey of composite filter designs for optical correlators [J]. Applied Optics, 1992, 31(23): 4773-4801.

共引文献5

同被引文献88

引证文献12

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部