期刊文献+

最大化约束密度单类分类器 被引量:1

Maximum Constrained Density One-class Classifier
下载PDF
导出
摘要 针对单类分类器设计中的密度方法,采用以任务为导向的设计思想,通过人为指定核密度估计的密度函数上界,增强了边界低密度区域数据敏感性,同时也有效降低了密度估计的计算复杂度。进一步最大化全体样本的核密度估计函数并采用线性规划,可快速得到相应的稀疏解,因而称之为最大化约束密度单类分类器(Maximum constrained density based one-class classifier,MCDOCC)。为充分利用单类数据中可能出现的极少量异常数据,进一步提出了带负类的最大化约束密度分类器(MCDOCC with negative data,NMCDOCC),通过挖掘异常数据的先验信息来修正仅有正常类的数据描述边界,可提高分类器泛化能力。UCI数据集上的实验结果表明,MCDOCC的泛化能力与单类支持向量机相当,NMCDOCC较之则有所提高,从而能够更高效地估计目标类数据概率密度。 A novel One-Class Classifier (OCC) was proposed within the framework of probability density estimation called Maximum constrained density based OCC, MCDOCC. By constraining the upper bound of the kernel density esti- mators with the introduced parameter, MCIX)CC is more sensitive in the low-density region located on boundary, allevi- ates the computation cost at the same time. Then, through maximizing the average constrained density of the target data, MCDOCC optimizes the object function with linear programming and the sparse solution can be reached finally. To further improve the generalization ability, two ways for MCIX)CC with Negative data (NMCI)OCC) were developed for full utilizing the prior knowledge existed in outliers. Experimental results on UCI data sets show that the generalization ability of MCDOCC is comparable with one-class support vector machines, but NMCDOCC is better than it.
出处 《计算机科学》 CSCD 北大核心 2014年第2期59-63,共5页 Computer Science
基金 国家自然科学基金重点项目(61035003)资助
关键词 单类分类器 概率密度估计 最大化约束密度 先验信息 One-class classifier, Probability density estimation, Maximum constrained density, Prior knowledge
  • 相关文献

参考文献11

  • 1Bishop. Neural networks for pattern recognition[M].{H}London:Oxford University Press,1995.
  • 2Tarassenko L,Hayton P,Brady M. Novelty detection for the identification of masses in mammograms[A].London:University of Cambridge,1995.
  • 3冯爱民,陈松灿.基于核的单类分类器研究[J].南京师范大学学报(工程技术版),2008,8(4):1-6. 被引量:8
  • 4Tax D,Duin R P. Support vector domain description[J].{H}Machine Learning,2004.45-66.
  • 5Meinicke P,Twellmann T,Ritter H. Maximum contrast classifiers[A].London,UK:Notes In Computer Science (LNCS) Press,2002.745-750.
  • 6Sain S R,Gray H L,Woodward W A. Outlier detection from a mixture distribution when training data are unlabeled[J].{H}Bulletin of the Seismological Society of America,1999,(1):294-304.
  • 7陈斌,陈松灿,潘志松,李斌.异常检测综述[J].山东大学学报(工学版),2009,39(6):13-23. 被引量:40
  • 8Scholkopf B,Platt J C,Shawe-Taylor J. Estimating the support of a high-dimensional distribution[J].{H}Neural Computation,2001,(7):1443-1471.
  • 9Yeung D Y,Chow C. Parzen-window network intrusion detectors[A].2003.
  • 10Duda R O,Hart P E,Stork D G. Pattern Classification[M].{H}New York:John Wiley and Sons,Inc,2001.

二级参考文献40

  • 1陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18
  • 2[1]Sch(o)lkopf B,Smola A.Learning With Kernels[M].Cambridge,MA:MIT Press,2002.
  • 3[2]Shawe-Taylor J,Cristianini N.Kernel Methods for Pattern Analysis[M].Cambridge:Cambridge University Press,2004.
  • 4[3]Vapnik V.Statistical Learning Theory[M].New York:Addison-Wiley,1998.
  • 5[4]Cristianini N,Taylor J S.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Cambridge:Cambridge University Press,2000.
  • 6[5]Mika S,R(a)tsch G,Weston J,et al.Fisher discriminant analysis with kernels[C]// Neural Networks for Signal Processing Ⅸ.Piscataway,NJ:IEEE,1999.
  • 7[6]Sch(o)lkopf B,Smola A J,Muller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998(10):1 299-1 319.
  • 8[7]Sch(o)lkopf B,Williamson R C,Smola A J.Support vector method for novelty detection[C]// Advances in Neural Information Processing Systems.Cambridge:MIT Press,2000.
  • 9[8]Tarassenko L,Hayton P,Brady M.Novelty detection for the identification of masses in mammograms[C]//Proc 4th Int IEE Conf Artif Neural Netw.Cambridge:Oxford University Press,1995.
  • 10[9]Lazarevic A,Ertoz L,Kumar V,et al.A comparative study of anomaly detection schemes in network intrusion detection[C]//SDM 2003.San Francisco:SIAM,2003.

共引文献46

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部