期刊文献+

基于自适应分块和SSIM的运动目标检测 被引量:4

Moving Object Detection Based on Adaptive Image Blocking and SSIM
下载PDF
导出
摘要 研究了目标检测方法。针对传统背景更新方法易受噪声干扰、算法执行速度慢等弊端,对背景差分法予以改进,提出一种基于自适应图像分块和结构相似性(SSIM)的运动目标检测方法。根据视频最初几帧得到初始背景模型,再对视频后续的每帧进行自适应分块处理,利用相邻帧对应分块的结构相似性计算局部更新率,建立背景模型,将背景与当前帧差分即得到运动目标。实验结果表明,与传统的背景差分法相比,改进后的方法具有更好的检测效果。 This paper focused on object detection. Motivated by the drawbacks of existing background update algorithms that are noise sensitive and slow in execution, an improvement on moving obiect detection method was proposed by image adaptive blocking and block-wise structure similarity of inter-frames. An initial background model was obtained with a few beginning frarnes and every successive frame was divided into blocks. Over corresponding blocks of two neighbor- ing frames, a similarity was defined in order to update the background model. The moving objects were then obtained by subtracting the background model from the current frame. Experimental results demonstrate that the improved method has better performance than traditional methods.
出处 《计算机科学》 CSCD 北大核心 2014年第2期119-122,共4页 Computer Science
关键词 运动目标检测 自适应分块 结构相似性 Moving object detection, Adaptive blocking,Structure similarity of inter-frames
  • 相关文献

参考文献13

  • 1姚春莲;周兵.运动对象检测及其在视频压缩与处理中的应用[M]{H}北京:冶金工业出版社,2010.
  • 2Elhabian S Y,El-Sayed K M,Ahmed S H. Moving Object Detection in Spatial Domain using Background Removal Techniques-State-of-Art[A].2008.32-54.
  • 3Wang Zhou,Bovik A C,Simoncelli. Structural approaches to image quality assessment[J].Handbook of Image and Video Processing,2005.18.
  • 4Loza A,Mibaylova L,Bull D. Structural Similarity-Based Object Tracking in Multimodality Surveillance Videos[J].{H}Machine Vision and Applications,2009,(2):71-83.
  • 5Loza A,Mihaylova L,Canagarajah N. Structural Similarity-Based Object Tracking in Video Sequences[A].{H}IEEE,2006.1-6.
  • 6Stauffer C,Grimson W E L. Adaptive Background Mixture Models for Real-Time Tracking[A].1999.
  • 7梁华,刘云辉.自适应多模快速背景差算法[J].中国图象图形学报,2008,13(2):345-350. 被引量:6
  • 8Jodoin J P,Bilodeau G A,Saunier N. Background subtraction based on local shape[J].
  • 9杨广林,孔令富.基于图像分块的背景模型构建方法[J].机器人,2007,29(1):29-34. 被引量:12
  • 10Stauffer C,Grimson E. Learning Patterns of Activity Using Real Time Tracking[J].IEEE Transactions on Pattern Recognition and Machine Intelligence,2000,(8):747-757.

二级参考文献38

  • 1田晓东,刘忠.基于改进梯度向量流形变模型的动目标检测方法[J].测试技术学报,2006,20(6):534-538. 被引量:1
  • 2曹丹华,邹伟,吴裕斌.基于背景图像差分的运动人体检测[J].光电工程,2007,34(6):107-111. 被引量:36
  • 3Gupte S, Masoud O, Martin R F K, et al. Detection and classification of vehicles[J]. IEEE Trans. on Intelligent Transportation Systems, 2002, 3 (1) : 37-47.
  • 4Messelodi S, Modena C M, Segata N, et al. A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes[C]. ICIAP 2005, LNCS 3617, Cagliari, Italy, F. Roli and S. Vitulano, 2005: 163-170.
  • 5Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking[ C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado, Fort Collins, 1999, 2(6) : 246-252.
  • 6Sun Y, Yuan B. Hierarchical GMM to handle sharp changes in moving object Detection[J]. Electronics Letters. 2004, 40 (13) : 801-802.
  • 7Huttenlocher D P, Klanderman G, Rucklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863.
  • 8Sim D G, Kwon O K, Park R H. Object matching algorithm using robust Hausdorff distance measures[J ]. IEEE Transactions on Image Processing, 1999, 8(3) : 425-429.
  • 9朱志刚(译),数字图像处理,1998年,359页
  • 10张贤达,现代信号处理,1994年

共引文献33

同被引文献31

  • 1Yin Jianqin, Han Yanbin, Hou Wendi, et al. erection ot tile mobile object with camouflage color under dynamic background based on optical flow [J]. Procedia Engineering, 2011, 15: 2201-2205.
  • 2Zhu Man, Sun Shuifa, Han Shuheng, et al. Comparison of moving object detection algorithms [C] //World Automation Congress, 2012.
  • 3Yang Jingjing, Dai Yaping. A modified method of vehicle ex- traction based on background subtraction [C] //IEEE Interna- tional Conference on Fuzzy Systems, 2012.
  • 4Zhang Ruolin, Ding Jian. Object tracking and detecting based on adaptive background subtraction [J]. Procedia Engineering, 2012, 29: 1351-1355.
  • 5Xie Yong. Improved gaussian mixture model in video motion detection [J]. Journal of Multimedia, 2013, 8 (5) 527-533.
  • 6Senst T, Evangelio RH, Sikora T. Detecting people carrying objects based on an optical flow motion model. Proc. of IEEE Workshop on Applications of Computer Vision. Washington DC. IEEE Computer Society. 2011. 301-306.
  • 7Chiu CC, Ku MY, Liang LW. A robust object segmentation system using a probability based background extraction algorithm. IEEE Trans. on Circuits and Systems for Video Technology, 2010, 20(4): 518-528.
  • 8Xiong CZ, Fan WY, Li ZX. Traffic flow detection algorithm based on intensity curve of high-resolution image. 2010 2nd International Conference on Computer Modeling and Simulation. Piscataway. IEEE Press. 2010. 159-162.
  • 9Maddalena L, Petrosino A. A self organizing approach to background subtraction for visual surveillance applications. IEEE Trans. on Image Processing, 2008, 17(7): 1168-1177.
  • 10夏永泉,宁少辉,李卫丽.一种简单有效的运动目标检测算法[J].计算机测量与控制,2011,19(2):356-358. 被引量:7

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部