期刊文献+

游戏场景中基于势场的交互寻路方法 被引量:2

Interactive Path-planning Method Based on Artificial Potential Field in Game Scenarios
下载PDF
导出
摘要 在即时战略游戏中,路径规划是一种重要且常见的任务。游戏的实时性要求玩家能够快速寻找一条进攻的路径,而且游戏单元之间普遍存在的交互作用对寻路质量有着重要的影响。传统的寻路算法如Dijkstra算法虽然能够找到最优路径,但是耗时较多,而且未体现真实游戏中的交互。为此选取RTS游戏中一种典型的攻防场景,提出基于人工势场的快速高效动态寻路方法,同时为了体现RTS中游戏单元之间的交互性,将模糊测度引入到势场寻路中。实验结果表明,采用人工势场法寻路较Dijkstra算法耗时少、路径平滑;而引入模糊测度体现了真实游戏中单元之间的交互影响作用,与真实的游戏场景更为接近。 In real-time strategy (RTS) games, path planning is one of the typical and important tasks for game players. To meet the requirement of real-time response, the game players need to find an offensive path quickly. Besides, there are often interactions among game units which will greatly influence the quality of path planning. Dijkstra algorithm is a traditional and widely used algorithm which can find an optimal path. However, this algorithm cannot meet the strict time limit in RTS games and does not consider the unit interactions. This paper selected a typical RTS game attack-de- fense scenario, and presented a fast and dynamic path-planning method based on artificial potential field. We also intro- duced the concept of fuzzy measure to describe the interaction of units. The experiment results show that the proposed method is more efficient and makes the selected game scenario closer to the real games.
出处 《计算机科学》 CSCD 北大核心 2014年第2期131-135,共5页 Computer Science
基金 国家自然科学基金项目(60903088 61170040) 河北省自然科学基金(F2012201023) 河北省第二批百名优秀人才支持计划(CPRC002)资助
关键词 即时战略游戏 DIJKSTRA算法 A*算法 人工势场法 模糊测度 模糊积分 Real-time strategy game, Dijkstra algorithm, A* algorithm, Artificial potential field,Fuzzy measure, Fuzzy integral
  • 相关文献

参考文献13

  • 1刘天白,张舒白.机器学习技术在游戏中的应用研究——解决鼠标轨迹识别问题[J].电脑知识与技术,2011,7(5):3100-3102. 被引量:2
  • 2杨佩,王皓,罗文杰,高阳.HUNTBot—第一人称射击游戏中NPC的结构设计[J].计算机科学,2008,35(11):290-292. 被引量:2
  • 3Huo P,Shiu S C-K,Wang H. A neural evolutionary model for case-based planning in real time strategy games[A].Berlin Heidelberg,2009.291-300.
  • 4Huo P,Shiu S C-K,Wang H. Application and comparison of particle swarm optimization and genetic algorithm in strategy defense games[A].{H}IEEE,2009.387-392.
  • 5Tong Xiao-lei,Li Yan,Li Wen-bang. Optimization Methods For Resources Allocation In Real-Time Strategy Games[A].Guilin,2011.507-513.
  • 6Peter H F N,Li Y J,Shiu S C K. Unit Formation Planning in RTS game by using Potential Field and Fuzzy Integral[A].Taipei,2011.178-184.
  • 7Li Ying-jie,Li Yan,Simon C K S. RTS game strategy evaluation using extreme learning machine[J].{H}SOFT COMPUTING,2012,(9):1627-1637.
  • 8HartPE,NilssonNJ,RaphaelB. A formal basis for the heuristic determination of minimum cost paths in graphs[J].IEEE Trans Syst Sci and Cybernetics SSC,1968,(2):100-107.
  • 9Dijkstra E W. A note on two problems in connexion with graphs[J].{H}NUMERISCHE MATHEMATIK,1959.269-271.
  • 10Khatib O. Real-Time Obstacle Avoidance For Manipulators and Mobile Robots[J].Int J Robotics Res,1986,(1):90-98.

二级参考文献15

  • 1Champandard A J. AI game development. Indianapolis: New Riders Press, 2003
  • 2Nareyek A. AI in Computer Games. ACM Queue, 2004,1 (10): 58-65
  • 3Magerko B, Laird J E, Assanie M, et al. AI Characters and Directors for Interactive Computer Games. AAAI, 2004 : 877-883
  • 4Orkin J. Agent Architecture Considerations for Real-time Planning in Games. AIDE, 2005:105-111
  • 5Burkert O, Kadlec R, Gemrot J, et al. Towards Fast Prototyping of IVAs Behavior: Pogamut 2. IVA,2007: 362-363
  • 6Karninka O A,Veloso M M,Schaffer S,et al. OameBots: a flexible test bed for multiagent team research. Commun. ACM, 2002,45(1) :43-45
  • 7Champandard A J. Flexible embodied agent architecture, http://sourceforge. net/projects/fear/
  • 8王皓 罗文杰 高阳 等.一种基于Agent的智能游戏开发平台及其NPC设计.计算机科学,2007,34(9):66-69.
  • 9LaMothe A.Tricks of the 3D Game Programming Gurus-Advanced 3D Graphics and Rasterization[M].United States of America:Sams Publishing,2003:5-7.
  • 10Bourg D M,Glenn Seemann.AI for Game Developers(影印本)[M].南京:东南大学出版社,2005:23-24.

共引文献2

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部