期刊文献+

基于稀疏重构的超图谱聚类方法 被引量:2

Hypergraph Spectral Clustering with Sparse Representation
下载PDF
导出
摘要 超图谱聚类方法由于能很好地描述数据点间的高阶信息,近年来受到了广泛的关注。不同于传统图结构,超图结构中的超边不是两两数据点间的连接,而是一组具有某种相同特性的数据子集。在实际应用中,常用K-近邻来构建超图中的超边,因此,并没有考虑到数据内在的关联性。提出一种新的基于稀疏重构的超图构建方法。对每一样本,用稀疏表示来找到与其最有关联的近邻样本,以此形成基于稀疏重构的超图模型,使得每个超边内的样本都具有很强的关联性。最后通过对超图拉普拉斯矩阵进行谱分解得到聚类结果。在人脸数据库、手写体数据库上的实验结果验证了算法的有效性。 Hypergraph spectral clustering method attracts much attention,because it can effectively describe high-order information among the data. Different from traditional graph model, hyperedge in hypergraph is not a pair-wise link be- tween two data points, while it is a subset of data points sharing with some attribute. In practices, hyperedge is usually built by simple K-NN clustering, so it does not consider inherent relationship among the data. We proposed a new hy- pergraph spectral clustering algorithm with sparse representation. For each data point,sparse representation was used to seek its related neighbors to form a hyperedge, so the data points in a hyperedge have strong dependency. Finally, the spectral decomposition was performed on the Laplace matrix of the hypergraph to obtain the clustering result. Extensive experiments on face database and handwriting database demonstrate the effectiveness of the proposed method.
出处 《计算机科学》 CSCD 北大核心 2014年第2期145-148,156,共5页 Computer Science
基金 国家自然科学基金项目(21004401) 模式识别国家重点实验室开放课题基金(201204234) 江苏省杰出青年基金(SBK201210296) 中国博士后基金(20110491429) 江苏省光谱成像与智能感知重点实验室(南京理工大学)基金(30920130122003) 江苏省优势学科建设工程资助
关键词 超图 稀疏表示 谱聚类 Hypergraph,Sparse representation,Spectral clustering
  • 相关文献

参考文献27

  • 1Belkin M, Niyog P. Laplacian eigen mapsfor dimensionality reduc- tion and data representation [J]. Neural Comput, 2002,6(15) : 1373-1396.
  • 2Rowels S, Saul L. Nonlinear dimensionality reduction by locally 1,inear emheddng [J]. Science, 20(30,290 (5500) : 2323-2326.
  • 3Tenenbaum J, Silva V, Langford J. Aglobal geometric frame- work for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500) : 2319-2323.
  • 4Shi J B, Malik J. Motion segmentation and tracking using nor- realized cuts [C]//IEEE International Conference on Computer Vision (ICCV). 1998:1154-1160.
  • 5Shi J B, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2000,22(8) : 888-905.
  • 6Agarwal S, Branson K, Belongie K. Higher order learning with graphs [C]//Int. Conf. Mach. Learn. Pittsburgh, PA, 2006 : 17- 24.
  • 7Agarwal S, Lira J, Zelnik M L, et al. Beyond pairwise clustering [C]//Int. Conf. Comput. Vis. Pattern Recog. San Diego, CA, 2005 : 838-845.
  • 8Yu J, Tao D C, Wang M. Adaptive Hypergraph Learning and its Application in Image Classfication [J]. IEEE Transactions on image processing, 2012,21(7) : 3262-3272.
  • 9Rodr' equez J. On the laplacian spectrum and walk-regular hy- pergraphs [J]. Linear and Multilinear Algebra, 2003, 15 (3): 285-297.
  • 10Cheng B, Yang J, Yan S, et al. Learning with M-graph for image analysis [J]. IEEE Trans. Image Process, 2010,19(4) : 858.

二级参考文献12

  • 1Von Luxburg U. A tutorial on spectral clustering[R]. TR-149. Max Planck Institute for Biological Cybernetics, 2006.
  • 2Shi J, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2000,22(8) :888-905.
  • 3Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm[C]//Advances in Neural Information Processing Systems. MIT Press, 2002:849-856.
  • 4Von Luxburg U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007,17 (4) : 395-416.
  • 5Weng J, Zhang Y, Huang W S. Candid covariance-free incremental principal component analysis[J]. IEEE Trans. on Pattern Analysis Machine Intelligence, 2003,25 (8) : 1034 1040.
  • 6Zhang Y, Weng J. Convergence analysis of complementary candid incremental principal component analysis[R]. MSU-CSE-01- 23. East Lansing: Michigan State University, 2001.
  • 7Chung F. Spectral graph theory(Vol. 92 of the CBMS Regional Conference Series in Mathematics)[C]//Conference Board of the Mathematical Sciences. Washington, 1997.
  • 8Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973,23 (98) : 298-305.
  • 9Aitken A C. The evaluation of the latent roota and latent vectors of a matrix[C]//Proc, roy. Soc. Eedinb. 1937,57:269-304.
  • 10Wilkinson J H.代数特征值问题[M].石钟慈,邓健新,译.北京科学出版社,2003:588-597.

共引文献6

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部