期刊文献+

城市轨道交通客流预测算法设计与仿真 被引量:7

Design and Simulation of Passenger Flow Forecast Algorithm for Urban Rail Transit
下载PDF
导出
摘要 为了更好地解决城市轨道交通的客流预测问题,提出了基于混合神经网络与卡尔曼滤波器的客流预测多层次模型。首先采用ELAN神经网络实现客流量的初步预测;然后采用卡尔曼滤波器对神经网络预测结果进行修正,以进一步提高预测结果精度;最后为了验证模型的正确性,以上海地铁交通作为研究对象,进行了客流观测和预测模拟。实验结果表明,所提出的多层次模型比单纯其中一种算法能减少约0.8%的误差,并且具有更好的实际效果。 To forecast exactly the passenger flow of the urban rail transit,a hierarchical framework based on neural net- work and Kalman-filter model was presented. First, ELAN neural network model is employed to implement the predic tion of the passenger flow. Then the Kalman-filter was used to refine the forecast data of the passenger flow so as to ad- vance the accuracy of the predicted results. Finally, in order to validate the proposed model, the passenger flow of Shanghai subway transport hub was observed and simulated. Experimental results show that the proposed hierarchical model reduces error about 0. 8% and has better effects in contrast with any single algorithm.
出处 《计算机科学》 CSCD 北大核心 2014年第2期276-279,共4页 Computer Science
基金 国家科技支撑计划(2009BAG18B04) 上海市重点学科建设项目(S30602)资助
关键词 轨道交通 客流预测 ELAN神经网络 卡尔曼滤波器 系统仿真 Rail transit,Passenger flow forecast, ELAN neural network, Kalman filter, System simulation
  • 相关文献

参考文献19

二级参考文献49

共引文献154

同被引文献71

  • 1吴祖峰,沈菲君.轨道交通客流预测方法研究[J].宁波高等专科学校学报,2004,16(4):24-28. 被引量:10
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1261
  • 3郑宇.城市计算与大数据[J].中国计算机学会通讯,2013,9(8):6-16.
  • 4Dean Jeffrey, Ghemawat Sanjay. MapReduce: Simplified Data Processing on Large Clusters[J]. Communications of the ACM, 2008,51 (1):107-113.
  • 5Valiant Leslie G. A Bridging Model for Parallel Computation[J]. Communication of the ACM, 1990,33 (3):103-111.
  • 6Jin Che-Qing, Yi Ke,Chen Lei,Yu Xu,LinXue Min. Slieling Window Top-k Queries on Uncertain Stream. Proceedings of the VLDB Endowment, 2008,1 ( 1 ):301-312.
  • 7G.Cormade,M.Garofalakis. Sketching Probabilistic Data Stream. Proceeding of the 2007 ACM SIGMOD International Conference on Management of Data. Bejing,2007:281-292.
  • 8White Tom. Hadoop: The Definitive Guide. O'Reilly : Yahoo! Press, 2009.
  • 9王祖超,郭翰琦,袁晓如.城市交通的可视化分析研究[J].中国计算机学会通讯,2013,9(8):38-43.
  • 10Mourat idis K, Yiu M L, Papadias D et al. Continuous Nearest Neighbor Monitoring in Road Networks[J]. Proceedings of the International Conference on Very Large Databases. Seoul, Korea, 2006:43-54.

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部