期刊文献+

组合分类模型在雷达干扰效果评估中的应用 被引量:3

USING COMBINED CLASSIFICATION MODEL TO EVALUATE RADAR JAMMING EFFECT
下载PDF
导出
摘要 雷达干扰效果评估可以转化为多分类问题进行解决。对影响雷达干扰效果因素进行分析,选取雷达干扰效果评估指标,给出评估指标计算方法,在此基础上,提出应用AdaBoost组合分类模型对雷达干扰效果进行评估。以RBF神经网络作为基分类模型,采用AdaBoost M1算法训练组合分类模型,并进行实验验证。结果证明,采用组合分类模型对雷达干扰效果进行评估是可行的,并且能够得到理想的效果。 The radar jamming effect evaluation can be solved by translating it into multi-class classification problems. Firstly, the factors which influence radar jamming effect are analyzed, the evaluating indicators that influence radar jamming effect are chosen, and the measure- ments are provided. Based on these, the AdaBoost combined classification model is proposed to evaluate radar jamming effect. In the end, taking RBF neural network as its base classification model, the AdaBoost M1 algorithm is used to train the combined classification model and experiments are carried out for verification. The result shows that using combined classification model to evaluate radar jamming effect is feasi- ble for it can achieve satisfactory result.
机构地区 [
出处 《计算机应用与软件》 CSCD 北大核心 2014年第1期69-72,共4页 Computer Applications and Software
关键词 雷达干扰效果评估 组合分类 AdaBoost神经网络 Radar jamming effect evaluation Combined classification AdaBoost Neural network
  • 相关文献

参考文献6

  • 1Shen Guiming, Zhu Weihua. Quantitative testing research of surveil- lance radar anti-jamming performance [ C ]//CIE International Confer- ence of Radar Proceedings, 2001:255 -259.
  • 2魏保华,吕晓雯,王雪松,肖顺平.雷达干扰效果模糊综合评估方法研究[J].系统工程与电子技术,2000,22(8):68-71. 被引量:24
  • 3Jiang Shouda, Lin Lianlei. Use support vector machine to evaluate the operational effectiveness of radar jammer [ C ]//Second International Conference onInnovative Computing, Information and Control (ICICIC2007). Kumamoto, Japan, September 5-7, 2007.
  • 4李亚军,刘晓霞,陈平.改进的AdaBoost算法与SVM的组合分类器[J].计算机工程与应用,2008,44(32):140-142. 被引量:8
  • 5Freund, Schapire. Experiments with a new boosting algorithm [ C ]// Proceedings of the thirteenth international Conference. Bari, Italy: Morgan Kaufmann, 1996 : 148 - 156.
  • 6Ian H Witten,Eibe Frank. Data Mining:Practical machine learning tools and techniques [ M ]. 2nd Ed. Morgan Kaufmann, San Francisco,2005.

二级参考文献8

共引文献30

同被引文献44

引证文献3

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部