期刊文献+

基于模板匹配及曲线拟合的视频字幕细化研究

ON VIDEO CAPTION THINNING BASED ON TEMPLATE MATCHING AND CURVE FITTING
下载PDF
导出
摘要 在视频字幕识别过程中,由于字幕像素比较低,使得二值化后,汉字边缘出现不规整的锯齿。针对该类汉字的细化,提出基于模板匹配及曲线拟合的方法。用角度为0°、45°、90°、135°的线段作为模板,分别匹配汉字中"横"、"撇"、"竖"、"捺"笔划,实现笔划提取;用二次Bezier曲线拟合"撇"、"捺"笔划,实现笔划重绘。对比实验表明,该方法对视频字幕的细化是有效的,且结果可以更好地被识别。 In recognition process of video caption, irregular sawtooth will appear at the edge of the Chinese characters after image binarisation due to the generally low pixels of the caption. In this paper, a method based on template matching and curve fitting is proposed to realise the thinning of this kind of Chinese characters. In order to realise strokes extraction, we use 0, 45, 90and 135 line segments as the templates to match four kinds of elementary strokes in terms of horizontal, left-falling, vertical and right-falling strokes in Chinese characters re- spectively. And the quadratic Bezier curve is used to fit the left-falling stroke and right-falling stroke and to realise the redrawing of the strokes. Comparative experiment illustrates that this method is effective in video caption thinning, and the effect can be reeognised more precisely.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第1期144-147,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61171159) 北京市教委科技发展计划项目(KM201110772021 KM201211232023) 国家科技支撑计划课题(2011BAH11B03) 北京信息科技大学网络文化与数字传播北京市重点实验室开放课题(ICDD201103)
关键词 视频字幕汉字细化 笔划 模板匹配 二次Bezier曲线 Video caption Thinning of Chinese characters Strokes. Template matching Quadratic Bezier curve
  • 相关文献

参考文献13

二级参考文献39

  • 1刘永.一个基于笔划元和笔划元对的限制性手写汉字识别方法[J].模式识别与人工智能,1989,2(4):37-40. 被引量:1
  • 2王国胤,施鸿宝.汉字识别的并行神经网络方法[J].模式识别与人工智能,1996,9(1):96-101. 被引量:5
  • 3王建平,钱自拓,王金玲,罗国军.基于数学形态学的图像汉字笔划细化和提取[J].合肥工业大学学报(自然科学版),2005,28(11):1431-1435. 被引量:12
  • 4崔屹.图像处理与分析[M].科学出版社,2000.43-55.
  • 5[1]Romero R D,Touretzky D S,Thibadeau R H.Optical Chinese Character recognition using probabilistic neural networks[J]. Pattern Recognition,1997,30(8):1279-1291.
  • 6[2]Lin Chi-Fang, Fang Yu-Fan, Juang Yau-Tang.Chinese Text Distinction and Font Id entification by Recognizing Most Frequently Used Characters[J].Image and Vision Computing,2001,19:329-338.
  • 7[3]Govindan V K,Shivaprassad A P. Character recognition:a review[J]. Pattern Recognition,1990,23(7):671-683.
  • 8[4]Lee S W,Kim C H, Ma H,et al. Multi-resolution recognition of unconstrained handwrriten numericals with wavelet transform and multi-layer cluster neural networks[J].Pattern Recognition,1996,29(12):1953-1961.
  • 9[5]Lee S W,Park J S. Nonlinear Shape Normalization Methods for the Recognition of Large Set Handwritten Characters[J]. Pattern Recognition, 1994,27(7) :895-902.
  • 10[1]Blum H.A Transformation for Extracting New Description of Shape.In:Wathen-dunn W ed.Model for the Perception of Speech and Visual.Cambride,Massachusetts:MIT Press,1967:362-380.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部