期刊文献+

基于PCA和蜂群算法优化的BP神经网络 被引量:7

BP NEURAL NETWORK BASED ON PCA AND ARTIFICIAL BEE COLONY ALGORITHM OPTIMISATION
下载PDF
导出
摘要 在研究BP神经网络的基础上,针对其收敛速度慢、容易陷入局部极小值等问题进行分析,设计实现一种新的混合神经网络模型。通过引入主成分分析的思想对样本进行降维,简化BP网络的结构,之后采用蜂群算法来优化BP网络的权值,把得到的最优权值赋予该神经网络,从而使优化后的神经网络具有结构简单、泛化性好和不易陷入局部极小值等优点。仿真实验结果表明,该网络模型能够达到比较高的分类精度。 After studying the disadvantages of BP neural network in low convergent speed and easy to be trapped into local minimum, we design and implement a new hybrid neural network model. First, by introducing the idea of principal component analysis (PCA) we reduce the dimensions of the samples, simplify the BP network structure, then by using artificial bee colony algorithm (ABC) we optimise the weight value of BP neuralnetwork. Finally, we assign the derived weight value to BP neural network, thereby enable the optimised BP neural network to possess the advantages of simple in structure, good in generalisation and not to be prone to falling into local minimum. Simulation experimental results show that this network model can reach higher classification precision.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第1期182-185,共4页 Computer Applications and Software
基金 河南省教育厅科技攻关计划项目(201210919010)
关键词 主成分分析法 蜂群算法 泛化性BP神经网络 Principal component analysis Artificial bee colony Generalisation BP neural network
  • 相关文献

参考文献12

  • 1Zhang Y,Wang J. Recurrent neural networks for nonlinear output regu-lation[J].{H}AUTOMATICA,2001,(08):1161-1173.
  • 2程玥,刘琼荪.一种放大误差信号的BP算法[J].计算机应用研究,2011,28(2):529-531. 被引量:3
  • 3周昌能,余雪丽.基于BP网络的权值更新快速收敛算法[J].计算机应用,2006,26(8):1940-1942. 被引量:6
  • 4Meissner M,Schmuker M,Schneider G. Optimized Particle Swarm Opti-mization(OPSO)and its application to artificial neural network training[J].{H}BMC Bioinformatics,2006.125-136.
  • 5王艳萍.遗传禁忌算法优化BP网络用于入侵检测[J].计算机应用研究,2010,27(3):1086-1088. 被引量:5
  • 6Karaboga D,Basturk B. A Powerful and Efficient Algorithm for Numeri-cal Function Optimization:Artificial Bee Colony (ABC) Algorithm[J].{H}Journal of Global Optimization,2007,(03):459-471.
  • 7田雨波.混合神经网络技术[M]{H}北京:科学出版社,200938-40.
  • 8Pearson K. On Lines and Planes of Closest Fit to Systems of Points in Space[J].{H}Philosophical Magazine,1901,(06):559-557.
  • 9于秀林;任雪松.多元统计分析[M]{H}北京:中国统计出版社,1999122-129.
  • 10Karaboga D,Basturk B. On the Performance of Artificial Bee Colony (ABC)Algorithm[J].{H}Applied Soft Computing Journal,2008,(01):687-697.

二级参考文献35

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2徐仙伟,叶小岭.遗传算法优化BP网络初始权重用于入侵检测[J].计算机应用研究,2005,22(3):127-128. 被引量:16
  • 3龚安,张敏.BP网络自适应学习率研究[J].科学技术与工程,2006,6(1):64-66. 被引量:18
  • 4刘佳璐,刘琼荪,胡上尉.基于放大误差信号的BP算法[J].计算机工程与应用,2007,43(21):90-92. 被引量:3
  • 5DE Den-ning. An intrusion detection model [ J]. IEEE Trans on Software Engineering,1987,139(2) :222-232.
  • 6SHUN J, MALKI H A. Network intrusion detection system using neural networks[C]//Proc of the 4th International Conference on Natural Computation. 2008:242- 246.
  • 7SONG Guang-jun, ZHANG Jia-lin, SUN Zhen-long. The research of dynamic change learning rate strategy in BP neural network and application in network intrusion detection[ C ]//Proc of the 3rd International Conference on Innovative Computing Information and Control. 2008:513-513.
  • 8TIAN Jing-wen, GAO Mei-juan. Network intrusion detection method based on high speed and precise genetic algorithm neural network [ C ]//Proc of International Conference on Networks Security, Wireless Communications and Trusted Computing. 2009:619-622.
  • 9WANG Hui-ran, MA Rui-fang. Optimization of neural networks for network intrusion detection[ C]//Proc of the 1st International Workshop on Education Teehnology and Computer Science. 2009: 418- 420.
  • 10YU Zhen-wei,TSAI J J P, WEIGERT T. An automatically tuning intrusion detection system[ J]. IEEE Trans on Systems, Man, and Cybernetics,Part B,Cybernetics,2007,37(2) :373-384.

共引文献11

同被引文献67

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部