期刊文献+

基于三次收敛LM算法的神经网络研究 被引量:4

ON NEURAL NETWORK BASED ON THREE CONVERGENCES LM ALGORITHM
下载PDF
导出
摘要 为了解决传统神经网络实际应用中计算复杂、耗时过长等问题,在LM(Levenberg-Marquardt)算法的基础上,结合数学最优化理论,找出三次收敛的改进型LM算法,且将其应用于BP神经网络。利用一组火灾现场数据,通过Matlab仿真对改进型LMBP算法和标准LMBP算法从收敛时间和仿真曲线拟合度两方面进行比较。结果表明改进型LMBP算法在收敛时间和拟合度两方面都有更好的效果,且该算法具有一般性,可以通过获取国民生产中各种应用场景的样本,采用该算法进行预测,更好地指导生产。 In order to solve the practical problems of traditional neural network application in computation complexity and long time consu- ming, on the basis of LM algorithm and combined with mathematical optimisation theory, we find out the improved LM algorithm with three convergences and apply it to BP neural network. Moreover, by using a set of data got from the scene of the fire, we compare the improved LMBP algorithm and the standard LMBP algorithm through Matlab simulation in two aspects of convergence time and simulation curve fitting. Experiments show that the improved LMBP algorithm has better effect than the standard LMBP algorithm in these two aspects. The improved LMBP algorithm also has the generality, it can be used to predict for better guiding the production by obtaining the samples of various scenari- os in national product.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第1期271-274,共4页 Computer Applications and Software
关键词 BP神经网络 仿真 最优化算法 LM算法 BP neural network Simulation Optimisation algorithm LM algorithm
  • 相关文献

参考文献10

  • 1鲍立威,何敏,沈平.关于BP模型的缺陷的讨论[J].模式识别与人工智能,1995,8(1):1-5. 被引量:43
  • 2阎平凡.对多层前向神经网络研究的几点看法[J].自动化学报,1997,23(1):129-135. 被引量:34
  • 3Dennis Jr J E, Gay D M, Welsch E. An adaptive nonlinear least-squares algorithm [ J ]. ACM Transactions on Math. software, 1981,7 : 348 - 383.
  • 4Bartholomew-Biggs M C. The estimation of the Hessian matrix in non- linear least squares problems with non-zero residuals [ J ]. Math. Prog. , 1977,12:67 -80.
  • 5陈非,敬忠良,姚晓东.一种模糊神经网络的快速参数学习算法[J].控制理论与应用,2002,19(4):583-587. 被引量:21
  • 6攀庆扬,王能趟,易大义.数假分析[M].华中理工大学出版社.1982.
  • 7Cartis C, Gould N I M, Toint P L. Adaptive cubic regularization meth- ods for unconstrained optimization. Part II: Worstcase function and de-rivative-evaluation complexity [ J ]. Math. ,2008 (7).
  • 8Ueda K, Yamasita N. On the complexity of steepest descent, Newton's and regularized Newton~ methods for nonconvex unconstrained optimi- zation problem [ J ]. SIAM J. Optim,2009,20 (6) :2833 - 2852.
  • 9Ueda K, Yamasita N. A regularized New-ton method without line search for unconstrained optimization [ R ]. Techinical report - 2009 - 007, Feb 12,2009.
  • 10戴葵.神经网络应用技术[M].长沙:国防科技大学出版社,1998.

二级参考文献25

共引文献93

同被引文献53

引证文献4

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部