期刊文献+

基于改进萤火虫算法的多模函数优化 被引量:6

MULTIMODAL FUNCTION OPTIMISATION BASED ON IMPROVED GLOWWORM SWARM OPTIMISATION
下载PDF
导出
摘要 为了提高萤火虫算法GSO(Glowworm Swarm Optimization algorithm)多模函数优化性能,针对GSO峰值发现率低、收敛速度慢和求解精度不高的缺点,提出萤火虫个体可自适应搜索峰值且移动步长可变的改进萤火虫算法IGSO(Improved Glowworm Swarm Optimization algorithm)。IGSO引入尝试性移动策略以增强算法的搜索能力,同时,以邻域平均距离为参考,对个体移动步长进行调整。采用典型多模函数进行测试,实验结果表明,IGSO峰值发现率高,收敛速度快且求解精度高,比GSO具有更优的多模函数优化性能。 In order to improve the performance of multimodal function optimisation with glowworm swarm optimisation ( GSO), and to solve the problems of GSO in low peaks discovery rate, slow convergence speed and low computational accuracy, we propose an improved glowworm swarm optimisation (IGSO), in which the individual glowworm (agent) can adaptively search the peaks, and its moving step is variable. The IGSO introduces the tentative moving strategy to enhance the searching ability of the algorithm, and meantime it uses average neighbourhood distance as the reference to adjust agent' s moving step. The results of experiment on typical multimodal functions indicate that the IGSO is superior to GSO in multimodal function optimisation with high peaks discovery rate, fast convergence speed and high computational accuracy.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第1期283-285,302,共4页 Computer Applications and Software
关键词 GSO IGSO多模函数 移动步长 GSO IGSO Multimodal function Moving step
  • 相关文献

参考文献11

  • 1覃俊,康立山,陈毓屏.一种新的求解多峰函数优化问题的动态演化算法[J].计算机科学,2004,31(3):134-136. 被引量:5
  • 2王湘中,喻寿益.多模态函数优化的多种群进化策略[J].控制与决策,2006,21(3):285-288. 被引量:19
  • 3刘长平,叶春明.一种新颖的仿生群智能优化算法:萤火虫算法[J].计算机应用研究,2011,28(9):3295-3297. 被引量:163
  • 4Krishnanand K N, Ghose D. Glowworm Swarm Optimization: A New method for Optimizing Multi-modalfunctions [ J ]. International Journal of Computational Intelligence Studies ,2009,1 ( 1 ) :93 - 119.
  • 5Krishnanand K N, Ghose D. Glowworm swarm optimization for simulta- neous capture of multiple local optima of multimodal functions [ J ]. Swarm Intelligence ,2009,3 ( 2 ) :87 - 124.
  • 6Krishnanand K N, Ghose D. A Glowworm Swarm Optimization Based Multi-robot System for Signal Source Localization [ M ]. Berlin, Germa- ny: [ s. n. ] ,2009.
  • 7Krishnanand K N, Ghose D. Chasing Multiple Mobile Signal Sources: A Glowworm Swarm Optimization Approach [ C ]//Proc of the 3 rd Indian International Conference on Artificial Intelligence. IEEE Press,2007.
  • 8Krishnanand K N. Glowworm Swarm Optimization:A Multimodal Func- tion Optimization Paradigm with Applications to Multiple Signal Source Localization Tasks [ D ]. Indian Institute of Science,2007.
  • 9刘佳昆,周永权.一种最大最小萤光素值人工萤火虫算法[J].计算机应用研究,2011,28(10):3662-3664. 被引量:26
  • 10Piotr Oramus. Improvements To Glowworm Swarm Optimization Algo- rithm[ J]. Computer Science ,2010,11:7 - 20.

二级参考文献33

共引文献213

同被引文献43

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部