期刊文献+

素环上非线性Lie中心化子 被引量:2

Nonlinear Lie Centralizers on Prime Rings
下载PDF
导出
摘要 设M是包含非平凡投影P的单位素环.利用算子论方法证明了:如果φ:M→M是非线性Lie中心化子,则存在λ∈■及映射ξ:M→■满足ξ([A,B])=0(A,B∈M),使得对任意的X∈M,有φ(X)=λX+ξ(X)I. Let M be a unital prime ring containing a nontrivial proj ection P.With some methods of operator theory,it is shown that ifφ:M→M is a nonlinear Lie centralizer,then there exist a scalarλand a mapξ:M→? to meet withξ([A,B])=0 (?A,B∈M)so thatφ(X)=λX+ξ(X)I for all X∈M.
作者 张芳娟
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第1期23-28,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10971123) 陕西省教育厅自然科学研究项目(批准号:2012JK0873)
关键词 Lie中心化子 素环 非线性 Lie centralizers prime rings nonlinear
  • 相关文献

参考文献11

  • 1Beidar K J,Martindal W S,Mikhalev A A. Rings with Generalized Identities[M].New York:MarcellDekker Inc,1996.
  • 2Zalar B. On Centralizers of Semiprime Rings[J].{H}commentations Mathematicae Universitatis Carolinae,1991,(04):609-614.
  • 3Vukman J. Centralizers on Semiprime Rings[J].{H}commentations Mathematicae Universitatis Carolinae,2001,(02):237-245.
  • 4Vukman J,Kosi-Ulbl I. Centralisers on Rings and Algebras[J].{H}Bulletin of the Australian Mathematical Society,2005,(02):225-234.
  • 5Vukman J,Kosi-Ulbl I. On Centralizers of Semiprime Rings[J].{H}Aequaliones Mathematias,2003.277-283.
  • 6Beidar K I,Martindale W S,Mikhalev A V. Lie Isomorphisms in Prime Rings with Involution[J].{H}Journal of Algebra,1994,(01):304-327.
  • 7ZHANG Jian-hua,ZHANG Fang-juan. Nonlinear Maps Preserving Lie Products on Factor von Neumann Algebras[J].{H}Linear Algebra and its Applications,2008,(01):18-30.
  • 8LU Fang-yan. Lie Derivations of J-Subspace Lattice Algebras[J].Proc Math Soc,2007,(08):2581-2590.
  • 9Cheung W S. Lie Derivations of Triangular Algebras[J].{H}Linear & Multilinear Algebra,2003,(03):299-310.
  • 10陈琳,张建华.套代数上的零点Lie可导映射[J].数学学报(中文版),2009,52(1):105-110. 被引量:9

二级参考文献32

  • 1Zhu J., Generalized derivable mappings at the point zero on nest algebras, Acta Mathematica Sinica, Chinese Series, 2002, 45(4): 783-788.
  • 2Jing W., Lu S., Li P., Characterisations of derivations on some operator algebras, Bull. Austral. Math. Soc., 2002, 66: 227-232.
  • 3Li J., Pan Z., Xu H., Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl., 2007, 332:1314-1322.
  • 4Zhu J., Xiong C. Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 2005, 397: 367-379.
  • 5Zhu J., Xiong C., Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 2007, 422: 721-735.
  • 6Li P., Ma J., Derivations, local derivations and atomic Boolean subspace lattices, Bull. Austral. Math. Soc., 2002, 66: 477-486.
  • 7Johnson B. E., Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 1996, 120: 455-473.
  • 8Cheung W. S., Lie derivation of triangular algebras, Linear and Multilinear Algebra, 2003, 51: 299-310.
  • 9Mathieu M., Villen.a A. R., The structure of Lie derivations on C^* algebras, J. Funct. Anal., 2003, 202: 504-525.
  • 10Zhang J., Lie derivations on nest subalgebras of von Neumann algebras, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 657-664.

共引文献16

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部