期刊文献+

一类具分数阶积分条件的分数阶微分方程组解的存在唯一性 被引量:3

Existence and Uniqueness of Solution of Boundary Value Problems for a Fractional Differential System with Fractional Integral Conditions
下载PDF
导出
摘要 利用Banach压缩映射原理,研究一类具有分数阶积分条件的分数阶微分方程组边值问题,其非线性项包含Caputo型分数阶导数,得到了该问题等价的积分方程组的格林函数及存在唯一解的充分条件,并给出了应用实例. Using Banach contraction mapping principle, the authors investigated a fractional differential system with fractional integral conditions,which involved the Caputo fractional derivative with nonlinear terms,and established Green’s function of an equivalent integral equation to the system and sufficient conditions for the existence and uniqueness of solution of the system.An example was given to illustrate the application of the result.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第1期29-33,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10701049) 安徽省教育厅自然科学基金(批准号:KJ2012B187) 宿州学院科研平台开放课题项目(批准号:2012YKF33 2013YKF16)
关键词 积分边值问题 分数阶微分方程 Caputo型分数阶导数 BANACH压缩映射原理 integral boundary value problem fractional differential equation Caputo fractional derivative Banach contraction mapping principle
  • 相关文献

参考文献12

  • 1Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier, 2006.
  • 2Lakshmikantham V, Leela S, Devi J V. Theory of Fractional Dynamic Systems [M]. New York: Cambridge Scientific Publishers, 2009.
  • 3ZHANG Shu-qin. Positive Solution for Boundary Value Problem of Nonlinear Frctional Differential Equations[J]. Electron J Differ Eq, 2006, 2006(36): 1-12.
  • 4WEI Zhong-li, LI Qing-dong, CHE Jun-ling. Initial Value Problems for Fractional Differential Eequations Involving Riemann-Liouville Sequential Fractional Derivative [J]. J Math Anal Appl, 2010, 367(1): 260-272.
  • 5BAI Zhan-bing. Solvability for a Class of Fractional m-Point Boundary Value Problem at Resonance [J]. Comput Math Appl, 2011, 62(3):1292-1302.
  • 6YANG Xiong, WEI Zhong-li, WEI Dong. Existence of Positive Solutions for the Boundary Value Problem of Nonlinear Fractional Differential Equations[J]. Commun Nonlinear Sci Numer Simul, 2012, 17(1) : 85-92.
  • 7SU Xin-wei. Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential Equations[J]. Appl Math Lett, 2009, 22(1): 64-69.
  • 8Ahmada Bashir, Nieto J J. Existence Results for a Coupled System of Nonlinear Fractional Differential Equations with Three-Point Boundary Conditions [J]. Comput Math Appl, 2009, 58(9): 1838-1843.
  • 9ZHAO Yi-ge, SUN Shu-rong, HAN Zhen-lai, et al. Positive Solutions for a Coupled System of Nonlinear Differential Equations of Mixed Fractional Orders [J]. Advances in Difference Equations, 2011, 2011(1) : 64-69.
  • 10JIANG Wei-hua. Solvability for a Coupled System of Fractional Differential Equations at Resonance [J]. Nonlinear Anal, 2012, 13(5): 2285-2292.

同被引文献20

  • 1郭大钧,非线性泛函分析[M].2版.济南:山东科学技术出版社,2004.
  • 2郭大钧.非线性泛函分析(第二版)[M].济南:山东科技出版社,2004:157-158.
  • 3YAO Qingliu. Positive Solutions for Eigenvalue Problems of Fourth-Order Elastic Beam Equations EJ]. Appl Math Lett, 2004, 17(2): 237-243.
  • 4MA Ruyun, XU Jia. Bifurcation from Interval and Positive Solutions of a Nonlinear Fourth-Order Boundary Value Problem [J]. Nonlinear Anal: Theory, Methods : Applications, 2010, 72(1): 113-122.
  • 5YAO Qingliu. Positive Solutions of Nonlinear Beam Equations with Time and Space Singularities [J]. J Matb Anal Appl, 2011, 374(2): 681 692.
  • 6LU Haixia, SUN Li, SUN Jingxian. Existence of Positive Solutions to a Non-positive Elastic Beam Equation with Both Ends Fixed [J], Boundary Value Problems, 2012, 2012(1) : 1-10.
  • 7XU Xiaojie, JIANG Daqing, YUAN Chengjun. Multiple Positive Solutions for the Boundary Value Problem of a Nonlinear Fractional Differential Equation [J], Nonlinear Anal: Theory, Methods & Applications, 2009, 71(10) : 4676-4688.
  • 8BAI Zhanbing, SUN Weichen. Existence and Multiplicity of Positive Solutions for Singular Fractional Boundary Value Problems[J],Comput Math Appl, 2012, 63(9): 1369- 1381.
  • 9BAI Zhanbing, SUN Weichen, ZHANG Weihai. Positive Solutions for Boundary Value Problems of Singular Fractional Differential Equations[J/OL]. Abstr Appl Anal, 2013, http://dx, doi. org/10.1155/2013/129640.
  • 10Kilbas A A, Srivastava H M, Trujillo J J, Theory and Applications of Fractional Differential Equations [M]. Amsterdam; Elsevier, 2006.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部