期刊文献+

毛白杨PtoGSTF4基因克隆及相关特性鉴定 被引量:1

Cloning and Characterization of PtoGSTF4 from Populus tomentosa
下载PDF
导出
摘要 该研究从毛白杨中克隆到1个Phi类谷胱苷肽S-转移酶(GST)基因(PtoGSTF4),编码213个氨基酸。表达模式分析发现,PtoGSTF4在正常生长、Hzoz和莠去津处理后的茎、叶以及茎的韧皮部均表达,属于组成型表达基因。在大肠杆菌中表达并纯化了PtoGSTF4重组蛋白,酶学性质分析表明PtoGSTF4对CDNB、NBD-C1、NBC和Cum—OOH等4种底物均有活性。动力学分析发现,PtoGSTF4对GSH具有较高的亲和力,而对CDNB的亲和力相对较低。在不同pH及温度条件下对PtoGSTF4蛋白进行活性检测,发现PtoGSTF4在pH7.5~10.5范围内或30℃~60℃温度范围内有较高的活性。研究推测,PtoGSTF4可能在毛白杨的抗逆生理中发挥重要作用。 In this study,a Phi class GST named PtoGSTF4 was cloned from Populus tomentosa. PtoGSTF4 encodes a protein of 213 amino acid residues. RT-PCR revealed that PtoGSTF4 was a constitutively expressed gene that is expressed in stem, leaf and phloem of stem of P. tomentosa under normal growth condition,and H202 and atrazine stressed conditions. The recombinant PtoGSTF4 was expressed in E. coli and purified by Ni^2+ sepharose affinity chromatography. PtoGSTF4 showed enzymatic activities towards substrates CI)NB,NBI)-Cl,NBC and Cum-OOH. Kinetic analysis found that the affinity of PtoGSTF4 to GSH was higher than that to CDNB. PtoGSTF4 had optimal pH ranging from 7.5-10.5 and optimal temperature ranging from 30 ℃-60℃. Our results indicated that PtoGSTF4 may play important roles in stress tolerance in P. tomentosa.
出处 《西北植物学报》 CAS CSCD 北大核心 2013年第12期2369-2374,共6页 Acta Botanica Boreali-Occidentalia Sinica
基金 国家自然科学基金(31270641)
关键词 谷胱苷肽S-转移酶 毛白杨 表达模式 酶学性质分析 glutathione S-transferase Populus tomentosa expression pattern enzymatic characterization
  • 相关文献

参考文献18

  • 1WANG W,VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003,218(1) : 1 - 14.
  • 2MISHRA N P, MISHRA R K, SINGHAL G S. Changes in the activities of anti oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors[J]. Plant Physiology ,1993,102(3) :903-910.
  • 3EDWARDS R, DIXON D P, WALBOT V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health[J]. Trends in Plant Science, 2000,5(5) : 193- 198.
  • 4ESPELUND M, SAEBOE-LARSSEN S, HUGHES D W,et al. Late embryogenesis-abundant genes encoding proteins with different num- bers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress[J]. Plant Journal ,1992,2(2):241-252.
  • 5GIRl J. Glycinebetaine and abiotic stress tolerance in plants[J]. Plant Signaling & Behavior,2011,6(11) :1 746-1 751.
  • 6GARG A K,KIMJ K,OWENS T G,et al, Trehalose accumulation in rice plants confers high tolerance levels to different abiotie stresses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(25) : 15 898- 15 903.
  • 7SMITH A P, DERIDDER B P,GUO W J, et al. Proteomic analysis of Arabidopsis glutathione S-transferases {rom benoxacor- and copper- treated seedlings[J]. The Journal of Biological Chemistry, 2004,279 : 26 098- 26 104.
  • 8KARAVANGELI M, LABROU N E, CLONIS Y D,et al. Development of transgenic tobacco plants overexpressing maize glutathione S- transferase I for chloroacetanilide herbicides phytoremediation[J]. Biomolecular Engineering, 2005,22 (4) : 121 - 128.
  • 9刘新仿,李家洋.紫外线强烈诱导的谷胱甘肽转移酶基因的功能鉴定[J].Acta Genetica Sinica,2002,29(5):458-460. 被引量:16
  • 10赵华燕,魏建华,路静,石超,王宏芝,宋艳茹.利用反义CCoAOMT基因培育低木质素含量毛白杨的研究[J].自然科学进展,2004,14(9):1067-1071. 被引量:20

二级参考文献18

  • 1ZHAO Huayan,WEI Jianhua,ZHANG Jinyu,LIU Huirong,WANG Tai,SONG Yanru.Lignin biosynthesis by suppression of two O-methyl-transferases[J].Chinese Science Bulletin,2002,47(13):1092-1095. 被引量:7
  • 2Axarli I, Dhavala P, Papageorgiou AC, Labrou NE (2009). Crystallographic and functional characterization of the fiuorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for di- phenylether herbicides and a novel L-site. J Mol Biol 385, 984-1002.
  • 3Basantani M, Srivastava A (2007). Plant glutathione transferases--a decade falls short. Can J Bot 85, 443- 456.
  • 4Dixon DP, Lapthorn A, Edwards R (2002). Plant glu- tathione transferases. Genome Biol 3, reviews 3004. 3001-3004.3010.
  • 5Edwards R, Dixon DP (2005). Plant glutathione trans- ferases. Methods Enzymol 401,169-186.
  • 6Edwards R, Dixon DP, Walbot V (2000). Plant glutathione S-transferases: enzymes with multiple functions in sick- ness and in health. Trends Plant Sci 5, 193-198.
  • 7Frova C (2003). The plant glutathione transferase gene family: genomic structure, functions, expression and evo- lution. Physiol Plant 119, 469-479.
  • 8Habig WH, Pabst M J, Jakoby WB (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249, 7130-7139.
  • 9Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005). Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Engine 22, 121-128.
  • 10Lan T, Yang ZL, Yang X, Liu Y J, Wang XR, Zeng QY (2009). Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Ceil 21, 3749-3766.

共引文献36

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部