期刊文献+

压电驱动快速反射镜的自适应反演滑模控制 被引量:14

Adaptive backstepping sliding mode control of fast steering mirror driven by piezoelectric actuator
下载PDF
导出
摘要 由压电驱动器驱动的快速反射镜(FSM)广泛应用于各种精密稳定跟踪系统,FSM的控制精度决定了系统的跟踪精度。但压电驱动器具有严重的迟滞非线性干扰,针对这一缺点,应用自适应径向基RBF神经网络对迟滞干扰进行非线性逼近,并在此基础上结合滑模控制和反演法,设计了自适应反演滑模(ABSM)控制器。仿真实验表明,相对于滑模控制器,ABSM控制器的最大跟踪误差和均方根误差为分别降低了57.26%和52.53%,提高了FSM的控制精度。 Fast steering mirror (FSM) driven by piezoelectric actuator has been widely used in multifarious precision instruments for stabilization and tracking systems,whose tracking accuracy is decided by the control accuracy of FSM.However,there is a seriously nonlinear interference of hysteresis in the driving of piezoelectric actuator.In response to this defect,an adaptive radial bass function (RBF) neural network was used to approximate the nonlinear interference of hysteresis,and based on which,the sliding mode control and backstepping algorithm were combined to design adaptive backstepping sliding mode (ABSM) controller.The simulation results show that,compared with the control accuracy of the sliding mode controller,the maximum tracking error and mean-root-square error of ABSM controller declines by 57.26% and 52.53% respectively,which improves the control accuracy of FSM evidently.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第1期59-63,共5页 High Power Laser and Particle Beams
基金 省级十二五预研项目(4010802010103)
关键词 快速反射镜 压电驱动器 反演滑模控制 RBF神经网络 fast steering mirror piezoelectric actuator backstepping sliding mode control RBF neural network
  • 相关文献

参考文献11

  • 1Lu Wei, Liu Liren, Sun Jianfeng. Analysis of complex axis control loop in satellite laser communications[J]. Optik-International Journal for Light and Electron Optics, 2012, 123(5) :458-461.
  • 2Huisman R, Aalders J W, Eggens M J, et al. Cryogenic mechatronic design of the HIFI focal plane chopper[J]. Mechatronics, 2011, 21 (8) : 1259-1271.
  • 3黎明,黄勇,艾勇.空间光通信中精跟踪控制器的设计[J].红外与激光工程,2010,39(2):270-274. 被引量:11
  • 4Daniel J K, Michael T B, David L T. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator[J]. Mechatron- ics, 2012, 22(3) :257-270.
  • 5Hamed G, Rezaei S M, Zareinejad M, et al. Robust control with unknown dynamic estimation for multi-axial piezoelectric actuators with coupled dynamics[J]. Comptes Rendus Mecanique, 2012, 340(9) :646-660.
  • 6Almeida A, Donadon M V, Faria A R, et al. The effect of piezoelectrically induced stress stiffening on the aeroelastic stability of curved composite panels[J]. Composite Structures, 2012, 94(12): 3601-3611.
  • 7Peng J Y, Chen X B. Novel models for one-sided hysteresis of piezoelectric actuators[J]. Mechatronics, 2012, 22(6):757-765.
  • 8Tan K K, Lee T H, Huang Sunan. Precision motion control: design and implementation[M]. London: Springer-Verlag, 2008:10-20.
  • 9Chen C M, Hsu Y C, Fung R F. System identification of a Scott-Russell amplifying mechanism with offset driven by a piezoelectric actuator [J]. Applied Mathematical Modelling, 2012, 36(6) :2788-2802.
  • 10Canudas C, Olsson N, Lischinksy P. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3):419-425.

二级参考文献9

共引文献10

同被引文献140

引证文献14

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部