期刊文献+

基于传输线原理的混响室散射场场线耦合模型 被引量:4

Model of field-to-line coupling in a reverberation chamber based on transmission line theory
下载PDF
导出
摘要 基于传输线原理,构建了均匀分布在单位球表面的入射波用于模拟混响室内“全向辐照”的电磁辐照模型,并利用Agrawal散射电压公式计算双导线传输线模型的终端负载响应电流.研究了均匀分布在球面入射波的入射方向、极化方向以及入射波数量对传输线终端响应的影响,并将数值计算结果与蒙特卡罗方法的计算结果进行对比.结果表明:分布在球面上的电磁波入射角为0~π、极化角度为0~π时,即可满足响应信号的数值完整性;入射电磁波数量达到100时,能够满足混响室内“全向辐照”的要求;理论模型计算结果与蒙特卡罗方法的计算结果吻合较好,该模型可以用于混响室内散射场场线耦合规律计算. Electromagnetic radiation model which could be used to calculate the "full radiation" in reverberation chamber was modeled in this paper using a large number of incidence waves which uniformly distributed on a unit sphere.The Agrawal scatter voltage formulation was used to calculate the payload current response.The influences of angle of incidence,polarization and the number of incidence waves on the payload current response were also investigated.The comparison was made between the simulation results with the Monte-Carlo result.The results showed that the simulation results obtained in this work agreed with the results of Monte-Carlo,and when the incidence angle was 0-π,and polarization angle was 0-π,the signal integrity could be fulfilled.When the number of incidence waves was no less than 100,the "full radiation" environment could be realized.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第1期222-226,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(51277180 51107147) 国家重点实验室基金项目(9140C87020211JB34)
关键词 混响室 传输线 散射场 电磁耦合 全向辐照 reverberation chamber transmission line scatter field electromagnetic couple full radiation
  • 相关文献

参考文献8

二级参考文献71

  • 1陈海林,陈彬,李正东,易韵,陆峰.不同电磁脉冲作用下地面有限长电缆外导体感应电流的数值计算[J].强激光与粒子束,2004,16(10):1286-1290. 被引量:20
  • 2丁坚进,沙斐.EMC混响室电磁场模态研究[J].电波科学学报,2005,20(5):557-560. 被引量:16
  • 3周香,蒋全兴,王文进.搅拌器配置对混波室独立采样点的影响[J].电波科学学报,2005,20(6):802-805. 被引量:4
  • 4Avila S L,Santos Jr M A,Weinzierl D,et al. Maximum working volume evaluation in a non-canonical reverberation chamber[J].IEEE Trans on Magnetics ,2009,45(3):1646-1649.
  • 5Lerosey G,Rosny J D. Scattering cross section measurement in reverberation chamber[J].IEEE Trans on Electromagnetic Compatibility, 2007,49(2) : 280-284.
  • 6Madsen K, Hallbjorner P,Orlenius C. Models for the number of independent samples in reverberation chamber measurements witb mecbani cal, frequency, and combined stirring[J]. IEEE Antennas and Wireless Propagation Lett, 2004,33:48- 51.
  • 7Bruns C, Vahldieck R. A closer look at reverberation chambers 3-D simulation and experimental verification[J]. IEEE Trans on Electromagnetic Compatibility ,2005,47(5) : 612-626.
  • 8Coates A,Sasse H G,Colehy D E, et al. Validation of a three-dimensional transmission line matrix (TLM) model implementation of a mode stirred reverberation chamber[J]. IEEE Trans on Electromagnetic Compatibility ,2007,49( 4):734- 744.
  • 9Yuan Z Y,He J L,Chen S M,et al. Evaluation of transmit antenna position in reverberation chamber[J]. IEEE Trans on Electromagnetic Compatibility, 2007,49 ( 1 ) : 86- 93.
  • 10Hill D A. Boundary fields in reverberation chamber[J]. IEEE Trans on Electromagnetic Compatibility ,2005,47(2) : 281- 290.

共引文献61

同被引文献56

  • 1林竞羽,周东方,毛天鹏,胡涛.电磁拓扑分析中的BLT方程及其应用[J].信息工程大学学报,2004,5(2):118-121. 被引量:27
  • 2MIL-HDBK-237D.Electromagnetic environmental effects[S].
  • 3Antonio S,Giuseppe F,Maurizio M.The reverberation chamber as emulator of radar ground clutter Doppler spectra[C]//Proceedings of the Fourth European Conference on Antennas and Propagation.2010.
  • 4Choi J H,Lee J H,Park S O.Characterizing the impact of moving mode-stirrers on the Doppler spread spectrum in a reverberation chamber[J].IEEE Antennas and Wireless Propagation Letters,2010,9:375-378.
  • 5Lehman E H.Shapes,moments and estimators of the Weibull distribution[J].IEEE Transactions on Reliability,1963,13(3):32-38.
  • 6IEC610004-21 : Electromagnetic compability ( EMC ) -Part 4-21 : Tes- ting and measurement techniques-Reverberation Chamber Test Meth- ods,2011.
  • 7Tesche F M, lanoz M V, Karlsson T. EMC analysis methods and com- putational models. 2009 ,49 (2) :427-433.
  • 8Rashidi F. Formulation of field-to-transmission lines coupling equa- tions in terms of magnrtic excitation field. IEEE Trans. Eleetromagn. Compat, 1993.
  • 9Agrawal A K,et al. Transient response of muhiconductor transmission hnes excited by a nonuniform electromagnetic field. 1EEE Trans. Electromagn Compat, 1980.
  • 10Taylor C D, Satterwhite R S, Harrison C W. The response of a termi- nated two-wire transmission line excited by a nonuniform electromag- netic field. IEEE Trans Electromagn Compat, 1987.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部