期刊文献+

基于2-C-甲基-D-赤藓糖醇-4磷酸途径的产紫槐二烯大肠杆菌构建及其补糖策略优化 被引量:1

Engineering MEP pathway in Escherichia coli for amorphadiene production and optimizing the bioprocess through glucose feeding control
原文传递
导出
摘要 2-C-甲基-D-赤藻糖醇-4-磷酸(2-methyl-D-erythritol-4-phosphate, MEP) 途径是大肠杆菌Escherichiacoli 唯一的萜类前体合成途径,研究表明它比甲羟戊酸(Mevalonate, MVA)途径具有更高的理论产率。但目前有关MEP 途径的调控所知非常有限,故单独强化MEP 途径对萜类异源合成产量的提高效果并不理想。研究中通过引入外源MEP 途径基因强化E. coli 萜类合成的遗传改造策略和发酵过程补糖控制优化,尝试更有效地释放MEP 途径的潜力,建立青蒿素前体——紫槐二烯的高密度发酵过程。研究结果表明共表达阿维链霉菌Streptomyces avermitilis dxs2 基因和枯草芽胞杆菌Bacillus subtilis idi 基因可使紫槐二烯的摇瓶发酵产量比野生菌株提高12.2 倍。随后针对该菌株建立了高密度发酵过程,发现稳定期的中前期(24?72 h) 是产物合成的关键期,通过稳定期补糖速率的调整,明显改善了产物合成速度,使紫槐二烯的产量从2.5 g/L 提高到了4.85 g/L,但不影响产物积累的周期。考虑到72 h 后菌体老化可能会影响产物合成,进一步采取了调整对数期的补糖速率控制菌体生长的策略,使紫槐二烯的产量达到6.1 g/L。研究结果为基于MEP 途径的萜类异源合成工程菌构建及其发酵工艺的建立奠定了基础。 The pathway of 2-methyl-D-erythritol-4-phosphate (MEP) is the exclusive isoprenoid precursor biosynthetic pathway in Escherichia coli, with a higher theoretical yield than mevalonate (MVA) pathway. However, due to lack of information about the regulation of MEP pathway, only engineering MEP pathway in E. coli achieved limited improvement of heterologous isoprenoid production. We used exogenous MEP pathway genes to improve MEP pathway in E. coli and optimized the glucose feeding to release the potential of MEP pathway. The results demonstrate that co-expression of dxs2 from Streptomyces avermitilis and idi from Bacillus subtilis can increase amorphadiene production with 12.2-fold compared with the wild-type strain in shake flask fermentation. Then we established a high-cell density fermentation process for the engineered strain, and found that the phase from 24 to 72 h is important for product biosynthesis. The optimization of glucose feeding rate during 24 to 72 h significantly improved product accumulation, which was improved from 2.5 to 4.85 g/L, within the same process time. Considering the attenuation of strain metabolism after 72 h, this study further modulated the glucose feeding rate during exponential phase to control strain growth and the amorphadiene yield eventually reached to 6.1 g/L. These results provided useful information to develop engineered E. coli for isoprenoid production through MEP pathway engineering.
出处 《生物工程学报》 CAS CSCD 北大核心 2014年第1期64-75,共12页 Chinese Journal of Biotechnology
基金 国家重点基础研究发展计划(973 计划) (No. 2012CB721104) 国家高技术研究发展计划(863 计划) (No. 2012AA02A701) 国家自然科学基金(Nos. 31170101 31100073) 中国科学院知识创新工程重大项目(No. KSCX2-EW-J-12) 资助~~
关键词 MEP途径 紫槐二烯 大肠杆菌 高密度发酵 补糖速率 2-methyl-D-erythritol-4-phosphate pathway (MEP pathway), isoprenoids, Escherichia coli, high-cell density fermentation, glucose feeding rate
  • 相关文献

参考文献29

  • 1Yadav VG,De Mey M,Lim CG. The future of metabolic engineering and synthetic biology:towards a systematic practice[J].{H}Metabolic Engineering,2012,(3):233-241.
  • 2Lee JW,Na D,Park JM. Systems metabolic engineering of microorganisms for natural and non-natural chemicals[J].{H}NATURE CHEMICAL BIOLOGY,2012,(6):536-546.
  • 3Keasling JD. Manufacturing molecules through metabolic engineering[J].{H}SCIENCE,2010,(6009):1355-1358.
  • 4Immethun CM,Hoynes-O'Connor AG,Balassy A. Microbial production of isoprenoids enabled by synthetic biology[J].Front Microbiol,2013,(75):1-8.
  • 5Ro DK,Paradise EM,Ouellet M. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J].{H}NATURE,2006,(7086):940-943.
  • 6Tsuruta H,Paddon C J,Eng D. High-level production of amorpha-4,11-diene,a precursor of the antimalarial agent artemisinin,in Escherichia coli[J].PLoS ONE,2009,(2):e4489.
  • 7Rodriguez-Concepcion M,Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids.A metabolic milestone achieved through genomics[J].{H}Plant Physiology,2002,(3):1079-1089.
  • 8Ajikumar PK,Xiao WH,Tyo KE. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J].{H}SCIENCE,2010,(6000):70-74.
  • 9Zhao J,Li Q,Sun T. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J].{H}Metabolic Engineering,2013,(0):42-50.
  • 10Partow S,Siewers V,Daviet L. Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae[J].PLoS ONE,2012,(12):e52498.

二级参考文献4

共引文献2

同被引文献78

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部