期刊文献+

含PyR_(14)TFSI电解液LiMn_2O_4正极高温电化学性能

Electrochemical Performance of LiMn_2O_4 in PyR_(14) TFSI Containing Electrolyte at 50 ℃
下载PDF
导出
摘要 利用差示扫描量热仪(DSC)、电化学工作站、BTS电池测试系统、X-射线衍射仪(XRD)、扫描电子显微镜(SEM)和X射线能量色散谱(EDS)等方法 ,研究了含离子液体N-甲基丁基吡咯烷二(三氟甲基磺酰)亚胺盐(PyR14TFSI)电解液性能以及LiMn2O4电极高温电化学性能.结果表明,随着1 mol·L-1LiPF6EC/EMC/DMC(1:1:1,by volume)中PyR14TFSI添加量的增大,电解液的电导率逐渐增大,添加量为2.5%(by mass)时,电解液DSC曲线由89.3oC、201oC、224oC三个强吸热峰变为116.6 oC和244.3 oC两个强吸热峰;50 oC下,LiMn2O4倍率性能显著提高,2C放电比容量提高16 mAh·g-1,100循环周期后容量保持率为88.3%(提高2.2%).PyR14TFSI添加有利于电极结构的稳定. In this work, with an aim to improve the performance of spinel lithium manganese and to reduce the safety concem of Li-ion battery system, the effects ofN-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl) imide (PyRtaTFSI) on performance of electrolyte and spinel lithium manganes are studied by using differential scanning calorimetry (DSC), BTS battery test system, electrochemical work station, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that the ionic conductivity of electrolyte is increased with the increase of PYR14TFSI concentration. When the concentration of PyR14TFSI is 2.5% (by mass), the DSC curves of the PyR14TFSI containing electrolyte are changed from three strong end0thermic peaks (89.3 ℃, 201 ℃, 224 ℃) to two strong endotherrnic peaks (116.6 ℃, 244.3 ℃). At 50℃, the rate capability is enhanced, the discharge capacity is increased by 16 mAh.g^-1, and the capacity retention is 88.3% (increased by 2.2%) after cycled for 100 times. PyR14TFSI is beneficial to the stability of the electrode structure.
出处 《电化学》 CAS CSCD 北大核心 2014年第1期66-72,共7页 Journal of Electrochemistry
基金 国家自然科学基金(No.21001097) 河南省基础与前沿研究项目(No.112300413216)资助
关键词 离子液体 尖晶石型锰酸锂 N-甲基丁基吡咯烷二(三氟甲基磺酰)亚胺盐 安全性 ionic liquids spinel lithium manganese PyR14TFSI safety
  • 相关文献

参考文献15

  • 1Ohno H Y. Electrochemical aspects of ionic liquids[M]. NewJersey,John Wiley & Sons, Inc. 2005: 1-2.
  • 2Fang S H, Tang Y F, Tai X Y, et al. One ether-functional?ized guanidinium ionic liquid as new electrolyte for lithi?um battery[J].Journal of Power Sources, 2011, 196 (3): 1433-144l.
  • 3Lewandowski A P, Hollenkamp A F, Donne S W, et al. Cycling and rate performance of Li-LiFePO. cells in mixed FSI-TFSI room temperature ionic liquids[J].Journal of Power Sources, 2010, 195(7): 2029-2035.
  • 4Boor S L, Nobuko Y M, Minato E S, et al. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries[J].Journal of Power Sources, 2010,195(21): 7426-743l.
  • 5Kuhnel R S, Bockenfeld N, Passerini S, et al. Mixtures of ionic liquid and organic carbonate as electrolyte with im?proved safety and performance for rechargeable lithium batteries[J]. Electrochimica Acta, 2011, 56(11): 4092- 4099.
  • 6LeeJ S, Quan N D, HwangJ M, et al. Ionic liquids con?taining an ester group as potential electrolytes[J]. Electro?chemistry Communications, 2006, 8(3): 460-464.
  • 7Zhang Z X, Zhou H, Yang L, et al. Both imidazolium and aliphatic ammonium-based asymmetrical dicationic ionic liquids as potential electrolytes additives applied to lithium ion batteries[J]. Electrochimica Acta, 2008, 53(14): 4833- 4838.
  • 8ZhengJ M, Zhu D R, Yang Y, et al. The effects of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsul?fonyl)imide-based electrolyte on the electrochemical performance of high capacity cathode material Li[Lio,Mrio,.Niol3Cool3]Oz[J]. Electrochimica Acta. 2012, 59(1): 14-22.
  • 9Wu Y P(吴宇平),Zhang H P(张汉平), Wu F(吴锋), et al. Polymer lithium ion battery[M]. Beijing, ChemicalIn- dustryPress(化学工业出版社),2007: 13.
  • 10Zhang SJ, Lu X M, Qing Z, et al. Ionic liquids physico?chemical properties[M]. Amsterdam, Elsevier B V. 2009: 23l.

二级参考文献29

  • 1阚素荣,卢世刚,黄松涛.尖晶石锰酸锂的组成对其结构和性能的影响[J].材料研究学报,2005,19(4):349-353. 被引量:5
  • 2庄全超,陈作锋,董全峰,姜艳霞,周志有,孙世刚.锂离子电池电解液中甲醇杂质对石墨电极性能影响机制的电化学阻抗谱研究[J].高等学校化学学报,2005,26(11):2073-2076. 被引量:18
  • 3黄松涛,曹松,阚素荣,储茂友,卢世刚,沈剑韵.掺Co^(3+)和Li^+的LiMn_2O_4晶体结构和电化学性能研究[J].稀有金属,2006,30(2):129-133. 被引量:10
  • 4Gummody R J,Thackeray M M.An investigation of spinel-related and orthorhombic LiMnO2 cathodes for rechargeable lithium batteries[J].J Electrochem Soc,1994,141:1 178-1 182.
  • 5Heider U,Oesten R,Jungnitz M.Challenge in manufacturing electrolyte solution for lithium and lithium batteries quality control and minimizing contamination level[J].J PowerSources,1999,81-82:119-122.
  • 6Aurbach D,Zinigrad E,Cohen Yaron,et al.A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solution[J].Solid State Ionics,2002,148:405-416.
  • 7Aurbach D,Weissman I,Zaban A,et al.On the role of water contamination in Li rechargeable batteris[J].Electrochimica Acta,1999,45:1 135-1 140.
  • 8Aurbach D,Markovsky B,Schechter A,et al.A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures[J].J Electrochem Soc,1996,143(12):3 809-3 819.
  • 9Chi-Huan Hun,Yung-Sik Hong,Hyun-Sil Hong,et al.Electrochemical properties of iodine-containing lithium manganese oxide spinel[J].J Power Sources,2002,111:176-180.
  • 10中科院化物所.沸石分子筛[M].北京:科学出版社,1978.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部