期刊文献+

基于块稀疏信号的正则化自适应压缩感知算法 被引量:5

Regularized adaptive matching pursuit algorithm of compressive sensing based on block sparsity signal
下载PDF
导出
摘要 在研究已有的块稀疏信号贪婪算法的基础上,提出一种正则化的自适应恢复算法。该算法在块稀疏度未知的前提下,添加了正则化的思想进行块挑选,从而更正确地挑选出块信号的支撑块,实现信号的重建。该算法首先在确定块的稀疏度和选择步长后,利用相关最大化原则实现支撑块的初次挑选;然后,依据已挑选出的支撑块再进行正则化分组,实现二次挑选;最终通过循环迭代正确挑选出整个信号的支撑块。通过仿真实验证明,该算法不仅不需要信号的块稀疏度作为先验知识,且较现有的块信号贪婪算法的重构概率更高,也比现有的块稀疏自适应贪婪算法所需的迭代次数更少和迭代时间更短。 A regularized adaptive matching pursuit algorithm as proposed after research and summarize the existing greedy algorisms based on block-sparse signal. This algorithm mainly in the light of regularized method under a condition that a block-sparse degree is unknown, so that the signal support set can be determined more accurately by the algorithm, then we can reconstruct a signal precisely. First, the algorithm initializes a sparsity degree and step size of a block signal; by maximizing the correlation between residual and measurement matrix, it realizes the selection of subset of the signal support. Then the algorithm updates the selected subset support set is acquired through iteration. The experimental results second prove th can get better reconstruction performance than other existing greedy algorith and it has less iteration number and iteration time than the other adaptive time. Finally, the exact at the proposed algorithm ms based on block signal, algorithm based on block signal.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第1期259-263,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61070152) 广东省科技计划项目(2007B010400073) 汕头大学科研基金项目(NTF10012)
关键词 通信技术 稀疏信号 自适应 正则化 贪婪算法 communication block signal adaptive regularized greedy algorithm
  • 相关文献

参考文献1

二级参考文献10

  • 1E Candes, J Romberg, Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006,52(2) :489 - 509.
  • 2D L Donoho. Compressed sensing[J]. IEEE Trans on Information Theory.2006,52(4) : 1289 - 1306.
  • 3E Candes, Terence Tao. Decoding by linear programming[ J ]. IEEE Trans on Information Theory, 2005, 51 ( 12): 4203 - 4215.
  • 4J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans on Information Theory, 2007,53 (12) : 4655 - 4666.
  • 5W Dai, O Milenkovic. Subspace pursuit for compressive sensing signal reconstruction[ J]. IEEE. Trans on Information Theory, 2009,55(5) :2230 - 2249.
  • 6T T Do,L Gan,N Nguyen, T D Tran. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [ A ]. In Proceedings of the 42th Asilomar Conference on Signals, Systems, and Computers [ C ]. Pacific Grove, California, 2008. 581 - 587.
  • 7R G Baraniuk, V Cevher, M F Duarte,C Hegde. Model-based compressive sensing [ J ]. IEEE, Trans on Information Theory, 2010,56(4) :1982 - 2001.
  • 8Y C Eldar,M Mishali. Robust recovery of signals from a structured union of subspaces[ J]. IEEE Trans on Information Theory,2009,55 (11) :5302 - 5316.
  • 9Y C Eldar, P Kuppinger, H Bolcskei. Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery [J]. IEEE Trans on Signal Processing, 2010, 58 (6) : 3042 -3054.
  • 10M Lobo, L Vandenberghe, S Boyd. Applications of second-order cone programming [J]. Linear Algebra and its Applications, 1998,284( 1 - 3) : 193 - 228.

共引文献14

同被引文献48

  • 1汤渭霖.声呐目标回波的亮点模型[J].声学学报,1994,19(2):92-100. 被引量:137
  • 2沈跃.基于压缩感知理论的电力系统数据检测与压缩方法研究[D].江苏大学,2011(11).
  • 3ZHANG M, LI K CH, HU Y SH. A high efficient com- pression method for power quality applications [J]. IEEE Transactions on Instrumentation and Measurement,2011, 60(6) :1976-1985.
  • 4DONOHO D. Compressed sensing[ J]. IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 5CANDES E, WAKIN M. B. An introduction to compres- sive sampling [ J ]. IEEE Signal Processing Magazine, 2008,25 (2) :21-30.
  • 6ROMBERG J. Imaging via compressive sampling [ J ]. IEEE Signal Processing Magazine ,2008,25 ( 2 ) : 14-20.
  • 7WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence ,2009, 31 (2) :210-227.
  • 8SHEN Y, WU H X, LIU G/-I, et al. Study on identification of power quality disturbances based on compressive sens- ing[ C ]. Proceeding of the 11 th World Congress on Intel- ligent Control and Automation,2014:5550-5555.
  • 9DONOHO D L. For most large underdetermined systems of linear equations the minimal L1 norm solution is alsothe sparsest solution [ J ]. Communication on Pure and Ap- plied Mathematics ,2006,59 (6) :797-829.
  • 10MALLAT S, ZHANG Z. Matching pursuit with time-fre- quency dictionaries[ J]. IEEE Transactions on Signal Pro- cessing, 1993,41 (12) :3397-3415.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部