期刊文献+

基于扩展有限元研究非均质材料的应力强度因子 被引量:1

Investigation of Stress Intensity Factors for Nonhomogeneous Materials Using Extended Finite Element Method
下载PDF
导出
摘要 用含裂纹尖端增强函数的扩展有限元借助相互作用积分,研究静态载荷作用下颗粒增强复合材料的断裂行为。假定基体和颗粒都是弹性材料,研究不同颗粒位置对基体裂纹尖端的应力强度因子的影响。用MATLAB编程,数值模拟了中心裂纹,单边裂纹扩展和孔边裂纹扩展,含刚性颗粒和柔性颗粒时裂纹尖端不同的应力强度因子或能量释放率的变化。 The extended finite element meth6d (XFEM) containing crack tip enhancement function is used to study the fracture behavior of particle filled composites under static loading with the help of interaction integration. In this paper both the matrix and particles are supposed to be elastic materials. Based on this assumption the effect of parti- cles' location on the stress intensity factor is discussed. In addition both the fixed crack and crack propagation are modeled by the commercial software MATLAB. The model with rigid particles and the model with flexible particles are considered respectively and their analysis indicate that the variation of stress intensity factor and the variation of energy release rate for the model with rigid particles are both respectively different from those for the model with flexible particles.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第1期62-68,共7页 Journal of Northwestern Polytechnical University
关键词 相互作用积分 扩展有限元法 裂纹尖端 应力强度因子 composite materials, crack propagation, crack tips, energy release rate, finite element method, frac- ture, functions, MATLAB, matrix algebra, numerical methods, stiffness matrix, stress intensity fac- tors interaction integral, extended finite element method (XFEM)
  • 相关文献

参考文献13

  • 1Daux C, Moils N, Dolbo W J, Sukumar N, Belytschko T. Arbitrary Branched and Intersecting Cracks with the Entended Finite Element Method[ J]. International Journal for Numerical Methods in Engineering, 2000, 48:1741-1760.
  • 2Moes N, Dolbow J, Belytschko T. A Finite Element Method for Crack Growth without Remeshing [ J ]. International Journal for Numerical Methods in Engineering, 1999, 46 : 131-150.
  • 3Sukumar N, Srolovitz D J, Baker T J, Prevost J H. Brittle Fracture in Polycrystalline Microstructures with the Extended Finite Element Method[ J ]. International Journal for Numerical Methods in Engineering, 1999, 45:601-620.
  • 4Zhang H H, Li L X. Modeling Inclusion Problems in Viscoelastic Materials with the Extended Finite Element Method [ J ]. Finite Elements in Analysis and Design, 2009, 45:721-729.
  • 5Asadpoure A, Mohammadi S. Developing New Enrichment Functions for Crack Simulation in Orthotropic Media by the Extended Finite Element Method[J]. International Journal for Numerical Methods in Engineering, 2007, 69:2150-2172.
  • 6王志勇,马力,吴林志,于红军.基于扩展有限元法的颗粒增强复合材料静态及动态断裂行为研究[J].固体力学学报,2011,32(6):566-573. 被引量:9
  • 7Melenk J M, Bubska I. The Partition of the Unity Finite Element Method: Basic Theory and Applications [ J ]. Computer Methods in Applied Mechanics and Engineering, 1996, 139:289-314.
  • 8Duarte G A, Oden J T. An H-P Adaptive Method Using Clouds [ J ]. Computer Methods in Applied Mechanics and Engineering, 1996, 139:237-262.
  • 9Yu H J, Wu L Z, Guo L C, Du S Y, He Q L. Investigation of Mixed-Mode Stress Intensity Factors for Nonhomogeneous Materi- als Using an Interaction Integral Method[ J]. International Journal of Solids and Structures, 2009, 46:3710-3724.
  • 10Laborde P, Pommier J, Renard Y, Salaun M. High-Order Extended Finite Element Method for Cracked Domains[ J]. Interna- tional Journal for Numerical Methods in Engineering, 2005, 64:354-381.

二级参考文献10

  • 1Leggoe J W,Hu X Z,Bush M B. Crack tip damage de- velopment and crack growth resistance in particulate reinforced metal matrix composites [J].Engineering Fracture Mechanics, 1996,53 : 873-895.
  • 2Kassam Z H A. ,Zhang RJ ,Wang Z R. Finite element simulation to investigate interaction between crack and particulate reinforcements in metal-matrix com- posites[J]. Materials Science and Engineering, 1995, A203:286-299.
  • 3Lipetzky P, Schmauder S. Crack-particle interaction in two-phase composites [J]. International Journal of Fracture, 1994,65 : 345-358.
  • 4Bush M B. The interaction between a crack and a par- ticle cluster [J]. International Journal of Fracture, 1997,88 :215-232.
  • 5Knight M G,Wrobel L C, Henshall J L. A study of the interaction between a propagating crack and an uncoated/coated elastic inclusion using the BE tech- nique[J]. International Journal of Fracture, 2002,114 : 47-61.
  • 6Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 45 : 601-620.
  • 7Belytschko T, Moes N, Usui S, Parimi C. Arbitrary discontinuities in finite elements [J]. International Journal for Numerical Methods in Engineering, 2001, 50:993-1013.
  • 8Dolbow J, Gosz M. On the computation of mixed- mode stress intensity factors in functionally graded materials [J]. International Journal of Solids and Structures, 2002,39 : 2557-2574.
  • 9Yu H J,Wu L Z,Guo L C,Du S Y, He Q L. Investi- gation of mixed-mode stress intensity factors for non- homogeneous materials using an interaction integral method[J]. International Journal of Solids and Struc- tures, 2009,46 : 3710-3724.
  • 10Song S H,Paulino G H. Dynamic stress intensity fac- tors for homogeneous and smoothly heterogeneous materials using the interaction integral method[J]. In- ternational Journal of Solids and Structures,2006,43: 4830-4866.

共引文献8

同被引文献17

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部