期刊文献+

高产油突变藻株Desmodesmus sp.D90G.19的光合作用特征 被引量:1

The photosynthetic characteristics of a Desmodesmus sp. mutant D90G-19 with improved lipid productivity
下载PDF
导出
摘要 Desmodesmus sp.S-1藻株经重离子诱变后得到的-株突变体D90G.19,较其野生型的油脂产率提高了20.6%;同时对野生型和突变株的光合放氧速率,色素组成和叶绿素荧光动力学进行了分析。与野生型相比,突变体D90G-19的光合作用有如下特点:1.D90G.19的光饱和点为500gmol/(m2·s),无论是在强光还是在弱光下,D90G-19的光合作用效率都显著高于其野生型;2.突变体D90G.19对高温的适应性比野生型强:3.在弱碱性条件下,D90G-19的光合效率的提升较之野生型更为显著。培养D90G-19的最佳光照强度应在250~400μmol/(m2·s)之间,最适温度在25~30℃,培养液pH值则以弱碱性为宜(7〈pH≤8)。叶绿素荧光动力学数据表明,突变体D90G-19的光合作用系统在强光下的损伤程度小于野生型,能够耐受更高的光强胁迫。 After induced by heavy-ion beam, a mutant of Desmodesmus sp., D90G-19 was obtained, which had a lipid productivity 20.6% higher than the wild type. The photosynthetic characteristics of mutant D90G-19 was characterized by analysis of photosynthetic oxygen evolution rate, chlorophyll concentration and chlorophyll fluo- rescence. Compared to the wild type, the D90G-19 had a higher photosynthetic efficiency regardless of high or low light intensity, the D90G-19 had a higher temperature tolerance and the D90G-19 had a more significant increase in photosynthetic efficiency under weak base condition. The optimum light intensity, temperature and pH for D90G-19 were 250-400 μmol/(m2-s), 25-30℃ and 7〈pH≤8 respectively. The photo saturation point of D90G-19 was about 500 μmol/(m2.s), and the Y(NO) suggested that the damage of photosynthesis system II in D90G-19 was less than that in wild type when they were exposed to high intensity light.
出处 《海洋科学》 CAS CSCD 北大核心 2013年第11期21-26,共6页 Marine Sciences
基金 中国科学院国际合作项目(31010103907) 中国科学院西部之光项目(Y106140XBL)
关键词 Desmodesmus SP 光合放氧速率 叶绿素荧光 光合作用特征 Desmodesmus sp. photosynthetic oxygen evolution rate Chlorophyll fluorescence photosynthetic characteristics
  • 相关文献

参考文献19

  • 1Hu Q,Sommerfeld M,Jarvis E. Microalgal triacyl-glycerols as feedstocks for biofuel production:perspe-ctives and advances[J].{H}Plant Journal,2008,(4):621-639.
  • 2Carr H,Bj?rk M. A methodological comparison of photosynthetic oxygen evolution and estimated electron transport rate in tropical ulva(chlorophyceae)species under different light and inorganic carbon conditions[J].{H}Journal of Phycology,2003,(6):1125-1131.
  • 3F?rster B,Osmond C B,Boynton J E. Mutants of Chlamydomonas reinhardtii resistant to very high light[J].{H}Journal of Photochemistry and Photobiology B:Biology,1999,(2-3):127-135.
  • 4Monteiro C M,Castro. Cadmium removal by two strains of desmodesmus pleiomorphus cells[J].Water And Soil Pollution,2010,(1-4):17-27.
  • 5Omar H H. Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism[J].{H}International Biodeterioration and Biodegradation,2002,(2):95-100.
  • 6Monteiro C M,Marques A P G C,Castro P M L. Characterization of Desmodesmus pleiomorphus isola-ted from a heavy metal-contaminated site:biosorption of zinc[J].{H}BIODEGRADATION,2009,(5):629-641.
  • 7Pan Y Y,Wang S T,Chuang L T. Isolation of thermo-tolerant and high lipid content green microalgae:Oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus[J].{H}BIORESOURCE TECHNOLOGY,2011,(22):10510-10517.
  • 8Hu G,Fan Y,Zhang L. Enhanced Lipid Produ-ctivity and Photosynthesis Efficiency in a Desmo-desmus sp. Mutant Induced by Heavy Carbon Ions[J].Plos One,2013,(4):e60700.
  • 9Wellburn A R. The Spectral Determination of Chloro-phyll-a and Chlorophhyll-B,as Well as Total Carot-enoids,Using Various Solvents with Spectrophoto-meters of Different Resolution[J].{H}Journal of Plant Physiology,1994,(3):307-313.
  • 10Kramer D,Johnson G,Kiirats O. New Fluores-cence Parameters for the Determination of QA Redox State and Excitation Energy Fluxes[J].{H}Photosynthesis Research,2004,(2):209-218.

二级参考文献51

  • 1陈浩峰,宋立荣,刘永定,林惠民,邹永东,吴天福,雷腊梅,李敦海.空间环境对微藻种群增长及其生理特性的影响[J].空间科学学报,1997,17(S1):67-72. 被引量:7
  • 2苗凤萍,李夜光,耿亚红,胡鸿钧.温度对雨生红球藻(Haematococcus pluvialis)生物量和虾青素产量的影响[J].武汉植物学研究,2005,23(1):73-76. 被引量:19
  • 3刘健晖,李爱芬.雨生红球藻在不同培养基的生长比较[J].生态科学,2006,25(2):113-115. 被引量:8
  • 4董庆霖,邢向英,赵学明.光照强度对雨生红球藻合成虾青素的影响[J].水生生物学报,2007,31(3):445-447. 被引量:5
  • 5Borowitzka M A, Huisman J M, Osborn A. Culture of the astaxanthin-producing green alga Haematococcus lacustris ( Ⅰ ): effects of nutrients on growth and cell type [ J]. J. Appl. Phycol. , 1991, 3:295-304
  • 6You C J, Chul W C, Yeoung S Y. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis [J]. Enzyme and Microbial Technology, 2006, 39:490-495
  • 7Christoph H, Kay G, Marco X, et al. Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis [ J]. J. Appl. Phycol. , 2001 , 13 : 79-87
  • 8Lu Fan, Vonshak A, Boussiba S. Effect of temperature and irradiance on growth of Haematococcus pluvialis ( Chlorophyceae ) [J]. J Phycol, 1994, 30:829-833
  • 9Boussiba S, Lu F, Vonshak A. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis [J]. Methods Enzymol. , 1992, 213 : 386-391
  • 10R. Sarada, Usha T, G.A. Ravishankar. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions [ J ]. Process Biochem. , 2002, 37 : 623-627

共引文献33

同被引文献13

  • 1季方,郝睿,刘颖,李道义,周宇光,董仁杰.一株高生物量链带藻分离筛选与培养条件优化[J].农业机械学报,2013,44(S2):149-154. 被引量:4
  • 2NEIL S.The ideal biofuel[J].Nature,2011,474:9-11.
  • 3SMITH V H,STUM B S M,DENOYELLES F J,et al.The ecology of algal biodiesel production[J].Trends in Ecology & Evolution,2010,25(5):301-309.
  • 4COSTA J A,DE MORAIS M G.The role of biochemical engineering in the production of biofuels from microalgae[J].Bioresour Technol,2011,102(1):2-9.
  • 5DAROCH M,GENG S,WANG G.Recent advances in liquid biofuel production from algal feedstocks[J].Applied Energy,2013,102:1371-1381.
  • 6LI X,HU H,GAN K,et al.Effect of different nitrogen and phosphorus concentrations on the growth,nutrient uptake,and lipid accumulation of a freshwater microalgae Scenedesmus sp[J].Bioresource Technology,2010,101:5494-5500.
  • 7WOOD A M,EVERROAD R C,Wingard L M.Measuring growth rates in microalgal cultures[J].Algal culturing techniques,2005:269-286.
  • 8YOO C,JUN S Y,LEE J Y,et al.Selection of microalgae for lipid production under high levels carbon dioxide[J].Bioresour Technol,2010,101:71-74.
  • 9DE MORAIS M G,COSTA J A V.Carbon dioxide fixation by Chlorella kessleri,C.vulgaris,Scenedesmus obliquus and Spirulina sp.cultivated in flasks and vertical tubularphotobioreactors[J].Biotechnology Letters,2007,29:1349-1352.
  • 10RICHMOND A.Handbook of Microalgal Culture:Biotechnology and Applied Phycology[M].Blackwell,2004.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部