期刊文献+

e_p^n空间中单位球迷向常数的极值问题

Extremum problems for isotropic constants of the unit balls in the spacen e_p^n
下载PDF
导出
摘要 寻找凸体迷向常数的一致(与空间维数无关)上界是Banach空间局部理论中著名的公开问题.对于n p空间中单位球,作为1-无条件体的特例,其迷向常数一致上界的存在性是已知的.根据其已知迷向常数的解析表达式,利用动态优化的方法给出其精确的上、下界和处极值时相对应的几何体;再利用凸体迷向常数与超平面截片的等价性给出了一个对其中心截片极值问题的应用. Finding the upper bound (independent on dimensional) of isotropic constants of convex bodies is a well known open problem in the local theory of Banach space. For unit balls in lp^n.space, that can be seen as the special case of 1-unconditional convex bodies, the existence of the upper bound of its isotropic constant is known. First, according to the known analytic expression of its isotropic constant, and by utilizing the method of dynamic programning, its precise upper and lower bound is given, and correspond geometric body of attaining extremum, again using equivalence of a convex body's central slicing and its isotropic constant, an application to lp^n. space unit ball's central slicing problem is given.
作者 吴力荣
出处 《浙江大学学报(理学版)》 CAS CSCD 2014年第1期18-22,共5页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(No.11371239)
关键词 凸体 迷向体 迷向常数 convex body isotropic body isotropic constant
  • 相关文献

参考文献35

  • 1柏世松,何斌吾.凸体几何中几个猜想的等价性[J].上海大学:自然科学版,2010,16(3):257-261.
  • 2MILMAN V, PAJOR A. Isotropic position and inertia ellipsoids and zonoinds of the unit ball of a normed n- dimensional space[J]. Geom Funet Anal, Lecture Notes in Math, 1989,1376 : 64-104.
  • 3LUTWAK E, YANG D, ZHANG G. A new ellipsoid associated with convex bodies[J]. Duke Math J,2000, 104(3) :375-390.
  • 4BASTERO J, GALVE F. PENA A, et al. Inequali- ties for the gamma function and estimates for the vol- ume of sections of Bp^n [J]. Proc Amer Math Soc, 2001, 130(1) : 183-192.
  • 5BOURGAIN J, KLARTAG B, MILMAN V. A reduc- tion of the slicing problem to finite volume ratio bodies [J]. C R Acad Sci Paris: Ser 1,2003,336:331-334.
  • 6BOURGAIN J, KLARTAG B, MILMAN V. Symme- trization and isotropic constants of convex bodies[J]. Geom Funct Anal, Lecture Notes in Math, 2004,1850 : 101-116.
  • 7陈巧云,何斌吾.凸体迷向条件的等价性[J].上海大学:自然科学版,2006,12(5):481-483.
  • 8KLARTAG B. An isomorphic version of the slicing problem[J]. Funet Anal, 2005,218 : 372-394.
  • 9KLARTAG B. On convex perturbations with a bound-ed isotropic constant[J]. GAFA Geom Funct Anal, 2006,16(6) : 1274-1290.
  • 10KI.ARTAG B, KOZMA G. On the hyperplane conjec- ture for random convex sets[J]. Israel J Math, in press.

二级参考文献24

  • 1冷岗松,张连生.Extreme properties of quermassintegrals of convex bodies[J].Science China Mathematics,2001,44(7):837-845. 被引量:3
  • 2王卫东,冷岗松.联系投影不等式Petty猜想的L_p-形式的不等式[J].应用数学和力学,2007,28(2):245-252. 被引量:6
  • 3Milman V D, Pajor A. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Geometric Aspects of Functional Analysis (1987-1988). Lecture Notes in Math,Vol 1376. Berlin: Springer, 1989.64~104.
  • 4Blaschke W. Uber affine Geometry ⅩⅣ: eine minimum Aufgabe für Legendres tragheits Ellipsoid. Ber verh sachs Akad d Wiss, 1918, 70:72~75.
  • 5Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press,1993.
  • 6Lindenstrauss J, Milman V D. Local theory of normed space and convexity. In: Gruber P M, Wills J M,eds. Handbook of Convex Geometry. Amesterdam: North-Holland, 1993.
  • 7John F. Extremum problems with inequalities as subsidiary conditions. In: Courant Anniversary Volume.New York: Intersience, 1948. 187~204.
  • 8Giannopoulos A A, Milman V D. Extremal problems and isotropic positions of convex bodies. Israel J Math, 2000, 117:29~60.
  • 9Brehm U, Hinow P, Vogt H, et al. Moment inequalities and central limit properties of isotropic convex bodies. Math Z, 2002, 240:37~51.
  • 10Ball K. An Elementary Introduction to Modem Convex Geometry. Flavors of Geometry MSRI Pubilications, Vol 31. Cambridge: Cambridge University Press, 1997. 1~58.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部