期刊文献+

鞍点问题的广义位移分裂预条件子 被引量:5

GENERALIZED SHIFT SPLITTING PRECONDITIONERS FOR SADDLE POINT PROBLEMS
原文传递
导出
摘要 对于大型稀疏非Hermitian正定线性方程组,Bai等人提出了一种位移分裂预条件子(J.Comput.Math.,24(2006)539-552).本文将这种思想用到鞍点问题上并提出了一种广义位移分裂(Generalized Shift Splitting,GSS)预条件子,同时证明了该预条件子所对应分裂迭代法的无条件收敛性.最后用数值算例验证了新预条件子的有效性. For large and sparse non-Hermitian positive definite linear systems, Bai et al. proposed a shift splitting preconditioner (J. Comput. Math., 24 (2006) 539-552). In this papere we extend this idea to study saddle point problems and present a generalized shift splitting preconditioner. The unconditional convergent property of the corresponding iterative method is proved. Finally, some numerical experiments are illustrated to show the efficiency of the new preconditioners.
出处 《计算数学》 CSCD 北大核心 2014年第1期16-26,共11页 Mathematica Numerica Sinica
基金 国家自然科学基金项目(11301290)资助
关键词 鞍点问题 广义位移分裂迭代法 收敛性 预处理 saddle point problems generalized shift splitting iteration method conver-gence preconditioning
  • 相关文献

参考文献4

二级参考文献41

  • 1Zhong-zhi Bai,Shao-liang Zhang.A REGULARIZED CONJUGATE GRADIENT METHOD FOR SYMMETRIC POSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS[J].Journal of Computational Mathematics,2002,20(4):437-448. 被引量:13
  • 2邵新慧,沈海龙,李长军,张铁.求解鞍点问题的一般加速超松弛方法[J].数值计算与计算机应用,2006,27(4):241-248. 被引量:10
  • 3Sturler E D, Liesen J. Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems[J]. SIAM J. Sci. Comput., 2005, 26(5): 1598-1619.
  • 4Wu X N, Golub G H, Cuminato J A, Yuan J Y. Symmetric-triangular decomposition and its applications-Part II: Preconditioners for indefinite systems[J]. BIT, 2008, 48: 139-162.
  • 5Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Apph, 2003, 24(3): 603-626.
  • 6Bai Z Z, Li G Q. Restrictively preconditioned conjugate gradient methods of linear equations[J]. IMA J. Numer. Anal., 2003, 23: 561-580.
  • 7Bai Z Z, Wang Z Q. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems[J]. J. Comput. Appl. Math., 2006, 187(2): 202-226.
  • 8Benzi M, Golub G H. A preconditioner for generalized saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26(1): 20-41.
  • 9Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numerica, 2005, 14: 1-137.
  • 10Bramble J H, Pasciak J E, Vassilev A T. Analysis of the inexact Uzawa algorithm for saddle point problems[J]. SIAM J. Numer. Anal., 1997, 34(3): 1072-1092.

共引文献27

同被引文献11

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部