摘要
对于大型稀疏非Hermitian正定线性方程组,Bai等人提出了一种位移分裂预条件子(J.Comput.Math.,24(2006)539-552).本文将这种思想用到鞍点问题上并提出了一种广义位移分裂(Generalized Shift Splitting,GSS)预条件子,同时证明了该预条件子所对应分裂迭代法的无条件收敛性.最后用数值算例验证了新预条件子的有效性.
For large and sparse non-Hermitian positive definite linear systems, Bai et al. proposed a shift splitting preconditioner (J. Comput. Math., 24 (2006) 539-552). In this papere we extend this idea to study saddle point problems and present a generalized shift splitting preconditioner. The unconditional convergent property of the corresponding iterative method is proved. Finally, some numerical experiments are illustrated to show the efficiency of the new preconditioners.
出处
《计算数学》
CSCD
北大核心
2014年第1期16-26,共11页
Mathematica Numerica Sinica
基金
国家自然科学基金项目(11301290)资助
关键词
鞍点问题
广义位移分裂迭代法
收敛性
预处理
saddle point problems
generalized shift splitting iteration method
conver-gence
preconditioning