摘要
提出了一种新的磨光函数,在分析它与已有磨光函数不同特性的基础上,研究了将它用于求解非线性P_0互补问题时,其磨光路径的存在性和连续性,进而设计了求解一类非线性P_0互补问题的非单调磨光算法.在适当的假设条件下,证明了该算法的全局收敛性和局部超线性收敛性.数值算例验证了算法的有效性.
In this paper, a new smoothing function is constructed, and on the basis of its prop- erties, the existence and the continuity of smoothing path are investigated when this s- moothing function is employed to solve a nonlinear P0 complementarity problem. Then, a non-monotone smoothing algorithm is developed to solve the nonlinear P0 complementarity problems. Under suitable assumptions, both global convergence and super-linear conver- gence are established for the developed algorithm. Numerical experiments show that the algorithm is efficient.
出处
《计算数学》
CSCD
北大核心
2014年第1期35-50,共16页
Mathematica Numerica Sinica
基金
国家自然科学基金资助(基金号:71221061
71071162)项目
湖南省自然科学基金(基金号:13JJ3002)项目
关键词
互补问题
磨光算法
全局收敛性
超线性收敛性
Complementarity Problems
Smoothing method
Global Convergence
Super-linear Convergence