期刊文献+

求解非线性P_0互补问题的非单调磨光算法 被引量:1

NON-MONOTONE SMOOTHING ALGORITHM FOR SOLVING NONLINEAR P_0 COMPLEMENTARITY PROBLEMS
原文传递
导出
摘要 提出了一种新的磨光函数,在分析它与已有磨光函数不同特性的基础上,研究了将它用于求解非线性P_0互补问题时,其磨光路径的存在性和连续性,进而设计了求解一类非线性P_0互补问题的非单调磨光算法.在适当的假设条件下,证明了该算法的全局收敛性和局部超线性收敛性.数值算例验证了算法的有效性. In this paper, a new smoothing function is constructed, and on the basis of its prop- erties, the existence and the continuity of smoothing path are investigated when this s- moothing function is employed to solve a nonlinear P0 complementarity problem. Then, a non-monotone smoothing algorithm is developed to solve the nonlinear P0 complementarity problems. Under suitable assumptions, both global convergence and super-linear conver- gence are established for the developed algorithm. Numerical experiments show that the algorithm is efficient.
作者 袁敏 万中
出处 《计算数学》 CSCD 北大核心 2014年第1期35-50,共16页 Mathematica Numerica Sinica
基金 国家自然科学基金资助(基金号:71221061 71071162)项目 湖南省自然科学基金(基金号:13JJ3002)项目
关键词 互补问题 磨光算法 全局收敛性 超线性收敛性 Complementarity Problems Smoothing method Global Convergence Super-linear Convergence
  • 相关文献

参考文献24

  • 1Huang N,Ma C F. The numerical study of a regularized smoothing Newton method for solving P0-NCP based on the generalized smoothing Fischer-Burrmeister function[J].Applied Mathematics and Computation,2012.7253-7269.
  • 2Zhang L P,Wu S Y,Gao T. Improved smoothing Newton methods for P0 nonlinear complementarity problems[J].Applied Mathematics and Computation,2009.324-332.
  • 3Revindran G,Gowda M S. Regularization of P0-functions in box variational inequality problems[J].SIAM JOURNAL ON OPTIMIZATION,2000.748-760.
  • 4Zhu J G,Liu H W,Li X L. A regularized smoothing-type algorithm for solving a system of inequalities with a Po-function[J].Journal of Computational and Applied Mathematics,2010.2611-2619.
  • 5Zhang Y,Huang Z H. A nonmonotone smoothing-type algorithm for solving a system of equalities and inequalities[J].Journal of Computational and Applied Mathematics,2010.2312-2321.
  • 6Yin H X,Zhang J Z. Global convergence of a smooth approximation method for mathematical programs with complementarity constraints[J].Mathematics of Operations Research,2006.255-269.
  • 7Ni T,Wang P. A smoothing-type algorithm for solving nonlinear complementarity problems with a non-monotone line search[J].Applied Mathematics and Computation,2010.2207-2214.
  • 8Tang J,Liu S Y,Ma C M. One-step smoothing Newton method for solving the mixed complementarity problem with a P0 function[J].Applied Mathematics and Computation,2009.2326-2336.
  • 9Tang J,Liu S Y. A new smoothing Broyden-like method for solving the mixed complementarity problem with a P0-function:Nonlinear Analysis[J].Real World Applications,2010.2770-2786.
  • 10Chen B,Harker P T. Smooth Approximations to Nonlinear Complementarity Problems[J].SIAM Journal of Optimization,1997,(02):403-420.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部