期刊文献+

一类非线性矩阵方程对称解的双迭代算法 被引量:4

DOUBLE ITERATIVE ALGORITHM FOR SYMMETRIC SOLUTION OF A NONLINEAR MATRIX EQUATION
原文传递
导出
摘要 利用逆矩阵的Neumann级数形式,将在Schur插值问题中遇到的含未知矩阵二次项之逆的非线性矩阵方程转化为高次多项式矩阵方程,然后采用牛顿算法求高次多项式矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立求非线性矩阵方程的对称解的双迭代算法.双迭代算法仅要求非线性矩阵方程有对称解,不要求它的对称解唯一,也不对它的系数矩阵做附加限定.数值算例表明,双迭代算法是有效的. By using Neumann series of inverse matrix, nonlinear matrix equation with the inverse matrix of quadratic unknown matrix polynomial in the Schur's interpolation problem can be transformed into the high-order polynomial matrix equation. Then Newton's method is applied to find symmetric solution of tile high-order polynomial matrix equation, and the modified conjugate gradient method is used to solve symmetric solution or symmetric least-square solution of linear matrix equation derived from each iterative step of Newton's method. In this way, a double iterative algorithm is established to find symmetric solution of nonlinear matrix equation. Nonlinear matrix equation is only required to have symmetric solution by double iterative algorithm, and the solution may not be unique. Besides, there are not additional limits to the coefficient matrix of the nonlinear matrix equation. Numerical experiments confirm that the double iterative algorithm is effective.
出处 《计算数学》 CSCD 北大核心 2014年第1期75-84,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金项目(11071196)资助
关键词 非线性矩阵方程 对称解 牛顿算法 修正共轭梯度法 双迭代算法 nonlinear matrix equation symmetric solution Newton's method modifiedconjugate gradient method double iterative algorithm
  • 相关文献

参考文献11

  • 1Sakhnovich L A. Interpolation Theory and Its Applications[A].Kluwer Academic,Dordrecht,1997.
  • 2Ran A C M,Reurings M C B. A nonlinear matrix equation connected to interpolation theory[J].Linear Algebra and its Applications,2004.289-302.
  • 3姚国柱,廖安平,段雪峰.矩阵方程X=Q-A~*(I_mX—C)^(-1)A的正定解[J].工程数学学报,2010,27(5):833-837. 被引量:1
  • 4Sun Jiguang. Perturbation analysis of the matrix equationX =Q + AH(X-C)-1A[J].Linear Algebra and its Applications,2003.33-51.
  • 5刘巍,熊慧军,王柏育.基于插值理论的非线性矩阵方程[J].湖南科技学院学报,2011,32(8):24-25. 被引量:1
  • 6Fritzsche B,Kirstein B,Sakhnovich L A. On extremal problems of interpolation theory with unique solution[J].Operator Theory:Advances and Applications,2010.333-346.
  • 7Higham N J,Kim H M. Solving a quadratic matrix equation by Newton's method with exact line searches[J].SIAM Journal on Matrix Analysis and Applications,2001,(02):303-316.
  • 8Long J H,Hu X Y,Zhang L. Improved Newton's method with exact line searches to solve quadratic matrix equation[J].Journal of Computational and Applied Mathematics,2008,(02):645-654.
  • 9张凯院,袁飞.求一般线性矩阵方程对称解的修正共轭梯度法[J].高等学校计算数学学报,2011,33(3):215-224. 被引量:8
  • 10李书连,张凯院,刘晓敏.一类矩阵方程异类约束解与Ls解的迭代算法[J].高校应用数学学报(A辑),2012,27(3):313-324. 被引量:11

二级参考文献25

  • 1李静,张玉海.矩阵方程X-A*X^(-q)A=Q当q>1时的Hermite正定解[J].工程数学学报,2005,22(4):679-686. 被引量:11
  • 2张凯院,蔡元虎.矩阵方程AXB+CXD=F的参数迭代解法[J].西北大学学报(自然科学版),2006,36(1):13-16. 被引量:16
  • 3袁仕芳,廖安平,雷渊.矩阵方程AXB+CYD=E的对称极小范数最小二乘解[J].计算数学,2007,29(2):203-216. 被引量:36
  • 4Ran A C M,Reurings M C B.A nonlinear matrix equation connected to interpolation[J].Linear Algebra and its Applications,2004,379:289-302.
  • 5Duan X F,Liao A P,Tang B.On the nonlinear matrix equation X-∑mi=1 A*iXδiAi=Q[J].Linear Algebra and its Applications,2008,429:110-121.
  • 6Zhan X Z.Computing the extremal positive definite solutions of a matrix equation[J].SIAM Journal on Scientific Computing,1996,17:337-345.
  • 7Zhan X Z.Matrix Inequalities[M].Berlin:Springer-Verlag,2002.
  • 8L.A. Sakhnovich, Interpolation Theory and Its Applications, Mathematics and Its Applications, vol. 428, Kluwer Academic, Dordrecht, 1997.
  • 9A.C.M,Ran,M.C.B.Reurings.A nonlinear matrix equation connected to interpolation theory. Linear Algebra Appl.,2004, 379:289- 302.
  • 10Sun Jiguang.Perturbation analysis of the matrix equation X = Q + A&H (X - C)^-1 A .Linear Algebra Appl.,2003,372:33-51.

共引文献15

同被引文献25

  • 1王明辉,魏木生,姜同松.子矩阵约束下矩阵方程AXB=E的极小范数最小二乘对称解[J].计算数学,2007,29(2):147-154. 被引量:11
  • 2Kim Sang Woo, Park Poo Gyeon. Matrix bounds of the discrete ARE solution[J]. Systems and Control Letters, 1999, 36(1): 15-20.
  • 3Davies Richard, Shi Peng, Wiltshire Ron. New upper solution bounds of the discrete algebraic Riccati matrix equation[J]. Journal of Computational and Applied Mathematics, 2008, 213(2): 307-315.
  • 4Bouhamidi Abderrahman, Jbilou Khalide. On the convergence of inexact Newton methods for discrete-time algebraic Riccati equations[J]. Linear Algebra and its Applications, 2013, 439(7): 2057-2069.
  • 5Deift P, Nanda T. On the determination of a tridiagonal matrix from its spectrum and a subma- trix[J]. Linear Algebra and its Applications, 1984, 60:43-55.
  • 6Li Jiaofen, Hu Xiyan, Zhang Lei. The nearness problems for special submatrix constraint[J]. Numerical Algorithms, 2010, Peng Zhuohua.
  • 7symmetric centrosymmetric with a 55(1): 39-57 matrix equation with a submatrix Long Jianhui, Hu Xiyan, Zhang Lei. Improved Newton's method with exact line searches to solve quadratic matrix equation[J]. Journal of Computational and Applied Mathematics, 2008, 222(2): 645-654.
  • 8The reflexive least squares solutions of the constraint[J]. Numerical Algorithms, 2013, 64(3): 455-480.
  • 9Doval J B R, Geromel J C, Costa O L V. Solutions for the linear-quadratic control problem of Markov jump linear systems[J]. Journal of Optimization Theory and Applications, 1999, 103(2): 283-311.
  • 10Gajic Z, Borno I. Lyapunov iterations for optimal control of jump linear systems at steady state[J]. IEEE Transactions on Automatic Control, 1995, 40(11): 1971-1975.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部