期刊文献+

基于垂直频繁模式树带有负载均衡的分布关联规则挖掘算法 被引量:8

Distributed rules mining algorithm with load balance based on vertical FP-tree
下载PDF
导出
摘要 大数据时代,开展面向海量、分布数据的知识发现研究成为学界和业界关注的热点,而负载均衡问题是开发分布式挖掘算法必须考虑的重要因素之一。为此,提出了一种基于垂直频繁模式树带有负载均衡的分布关联规则挖掘算法,算法采用垂直频繁模式树存储项及其关联而无需对局部挖掘结果进行合并,减少了通信量,简化了处理流程。同时所提出的算法采用混合体系结构即中心站点按照局部站点的处理能力分配任务,实现了负载均衡,提升了算法的性能。实验结果表明所提算法切实可行并具有较高效率。 In mass data era, the research on knowledge discovery of massive and distributed data has become the hot spot in both academic field and industry. The problem of load balance is one of the important factors that must be considered in developing a distributed mining algorithm. Therefore, a distributed association rules mining algorithm with load balance based on vertical FP-tree (VFP-LBDM) was proposed in this paper. Vertical frequent pattern tree was used in this algorithm to store items and their associations, and there was no need to combine the local mining results. Therefore, the communication cost was reduced and the processing procedure was also simplified. At the same time, the algorithm used the hybrid architecture in which the central site assigned tasks according to the processing capacity of each local site. It realized the load balance and improved the performance of the algorithm. The experiment shows that the algorithm given in this paper is feasible and has higher efficiency.
出处 《计算机应用》 CSCD 北大核心 2014年第2期396-400,共5页 journal of Computer Applications
基金 教育部人文社会科学研究青年基金资助项目(12YJCZH048) 辽宁"百千万人才工程"培养经费资助项目(2011921033)
关键词 关联规则挖掘 分布式 垂直频繁模式 负载均衡 序列化 association rules mining distribution Vertical Frequent Pattern (VFP) load balance serialization
  • 相关文献

参考文献10

  • 1AGRAWAL R,IMIELINSKI T,SWAMI A. Mining association rules between sets of items in large databases[A].New York:ACM,1993.207-216.
  • 2HAN J W,PEI J,YIN Y. Mining frequent patterns without candidate generation[A].New York:ACM,2000.1-12.
  • 3TSENGFSC,KUOYH,HUANGYM. Toward boosting distributed association rule mining by data de-clustering[J].{H}Information Sciences,2010,(11):4263-4289.
  • 4何波.基于频繁模式树的分布式关联规则挖掘算法[J].控制与决策,2012,27(4):618-622. 被引量:11
  • 5CHEN X Y,HE Y S,CHEN P F. HPFP-Miner:A novel parallel frequent itemset mining algorithm[A].Washington,DC:IEEE Computer Scciety,2009.139-143.
  • 6徐杰,李云,刘博,张晓斌.基于垂直FP树的并行频繁项集挖掘[J].计算机与数字工程,2012,40(10):12-15. 被引量:3
  • 7LIU H.Design of frequent pattern mining algorithm LPS-miner and research on parallel formulations(刘慧玲.频繁模式挖掘算法LPS-Miner及其并行模式研究[D].兰州:兰州大学,2009.)频繁模式挖掘算法LPS-Miner及其并行模式研究[D].兰州:兰州大学,2009.)[D].Lanzhou:Lanzhou University,2009.
  • 8CHEUNG D W L,HAN J,NG V T. A fast distributed algorithm for mining association rules[A].Washington,DC:IEEE Computer Society,1996.31-42.
  • 9陈敏,李徽翡.集群系统中的FP-Growth并行算法[J].计算机工程,2009,35(20):71-72. 被引量:8
  • 10曹文梁.一种分布式数据库关联规则挖掘算法[J].计算机系统应用,2012,21(8):218-221. 被引量:1

二级参考文献21

  • 1李力,翟东海,靳蕃.一种频繁项集并行挖掘算法[J].铁道学报,2003,25(6):71-75. 被引量:3
  • 2何波,王华秋,刘贞,王越.快速挖掘频繁项集的并行算法[J].计算机应用,2006,26(2):391-392. 被引量:5
  • 3Agrawal R, Imielinski T, Swami A N. Mining Association Rules Between Sets of Items in Large Databases[C]//Proc. of the ACM SIGMOD International Conference on Management of Data. Washington D.C., USA: ACM Press, 1993: 207-216.
  • 4Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proc. of ACM-SIGMOD International Conference on Management of Data. Dallas, USA: ACM Press, 2000: 1-12.
  • 5ZaIane O R, Mohammad E H, Lu P. Fast Parallel Association Rule Mining Without Candidacy Generation[C]//Proc. of the 1st 1EEE International Conference on Data Mining. San Jose, USA: IEEE Computer Society Press, 2001: 665-668.
  • 6Liu Li, Li E, Zhang Yimin, et al. Optimization of Frequent Itemset Mining on Multiple-core Processor[C]//Proc. of the 33rd International Conference on Very Large Data Bases. Vienna, Austria: VLDB Endowment, 2007:1275-1285.
  • 7Han J W,Pei J,Yin Y.Mining frequent patterns withoutCandidate Generation[C].Proc of the 2000 ACM SIGMODInt Conf on Management of Data.Now York:ACM Press,2000:1-12.
  • 8Agrawal R,Shafer J C.Parallel mining of associationrules[J].IEEE Trans on Knowledge and Data Engineering,1996,8(6):962-969.
  • 9Cheung D W,Han J W,Ng W T,et al.A fast distributedalgorithm for mining association rules[C].Proc of IEEE4th Int Conf on Management of Data.Miami Beach,1996:31-34.
  • 10Agrawal R,Srikant R.Fast algorithms for miningassociation rules[C].Proc of the 20th Int Conf Very LargeDatabase.Santiago,1994:487-499.

共引文献19

同被引文献78

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部