期刊文献+

多样性反馈与控制的粒子群优化算法 被引量:8

Diversity feedback and control particle swarm optimization algorithm
下载PDF
导出
摘要 针对粒子群优化(PSO)算法的早熟收敛问题,提出了一种多样性反馈与控制的粒子群优化(DFCPSO)算法。该算法在搜索过程中根据多样性反馈信息,动态调整算法参数,改善了搜索次数在多样性曲线上的分布情况。当多样性或群体适应度方差下降到给定的阈值时,通过基于最优点排斥的初始化操作,高效率发散,使粒子飞离聚集区域,重新开始搜索,从而使种群多样性保持在合理范围内,避免了早熟收敛现象。对多个标准测试函数的实验结果表明,与当前多样性控制的粒子群优化(DCPSO)算法相比,DFCPSO算法在复杂优化问题和多模态优化问题中具有更强的全局搜索能力。 Concerning the premature convergence problem in Particle Swarm Optimization (PSO) algorithm, a Diversity Feedback and Control PSO (DFCPSO) algorithm was proposed. In the process of search, the algorithm dynamically adjusted the algorithm parameters according to the feedback information of diversity; as a result, the distribution of iterations in the diversity curve was improved. When the population diversity or the variance of the population's fitness dropped to the given thresholds, the proposed algorithm would let the particle swarm initialize based on the repulsion of the global best position and fly away from the gathering area efficiently to search again, hence the diversity was controlled in ~ reasonable range, which avoided premature convergence. The experimental results on several well-known benchmark functions show that DFCPSO has stronger global optimization ability in the complicated problems and multi-modal optimization when being compared with the existing Diversity-Controlled PSO (DCPSO).
出处 《计算机应用》 CSCD 北大核心 2014年第2期506-509,513,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(51075137)
关键词 粒子群优化 早熟收敛 多样性 全局最优 Particle Swarm Optimization (PSO) premature convergence diversity global convergence
  • 相关文献

参考文献13

二级参考文献66

共引文献560

同被引文献86

  • 1孙鑫,孙优贤.造纸过程定量水份解耦控制分析[J].控制理论与应用,2001,18(z1):121-124. 被引量:10
  • 2舒怀林,郭秀才,舒杰磊.注塑机料筒多段温度PID神经网络解耦控制系统[J].计算技术与自动化,2004,23(4):55-57. 被引量:4
  • 3李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 4熊淑贞,张根宝.抄纸过程定量水分控制仿真研究[J].计算机仿真,2007,24(1):314-318. 被引量:6
  • 5Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks,IV,Piscataway,New Jersey,1995:1942-1948.
  • 6KENNDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 4th IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE, 1995:1942-1948.
  • 7SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE World Congress on Computational Intelligence. Piscataway, NJ:IEEE, 1998:69-73.
  • 8ZHAN Z-H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(6):1362-81.
  • 9KENNEDY J, MENDES R. Population structure and particle swarm performance[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Piscataway, NJ:IEEE, 2002:1671-1676.
  • 10MENDES R, KENNEDY J, NEVES J. The fully informed particle swarm:simpler, maybe better[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):204-210.

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部