期刊文献+

基于骨架特征的人数统计 被引量:8

People counting based on skeleton feature
下载PDF
导出
摘要 针对视频监控中行人在运动中将出现部分或严重遮挡的问题,提出了一种基于人体骨架特征的人数统计算法。首先,利用形态学骨架提取算法提取初始人体骨架图;然后,剔除骨架孤立点和骨架伪分支,得到最优人体骨架特征;最后,通过分析骨架的人头区域特征,建立人头检测响应规则,检测行人人头个数实现人数统计。实验结果表明,该算法能够解决视频监控人物相互之间部分遮挡和严重遮挡问题,针对相对稀疏的场景该算法人数统计准确率为95%左右。 Concerning the problem that pedestrians would be partially or seriously shaded by each other in video monitoring, this paper proposed a people counting algorithm based on human body skeleton feature. At first, the initial human skeleton was extracted by morphological skeleton extraction algorithm. Then the optimal skeleton feature was obtained by eliminating outliers and pseudo branches. Finally, this paper established a head detection response rule through analyzing the characteristics of skeleton in head areas to detect the head of pedestrian, and completed people counting by counting the heads of pedestrians. The experimental results show that the algorithm can solve the problems of partial and serious shading in video monitoring. For relatively sparse scene, the overall people counting accuracy rate of the algorithm is about 95%.
出处 《计算机应用》 CSCD 北大核心 2014年第2期585-588,共4页 journal of Computer Applications
基金 四川省教育厅科技项目(12zd1005) 西南科技大学研究生创新基金资助项目(13ycjj39) 四川省科技创新苗子工程资助项目(20132019)
关键词 人数统计 人头检测 骨架特征 前景检测 检测响应规则 people counting head detection skeleton feature foreground detection detection response rule
  • 相关文献

参考文献6

二级参考文献41

  • 1扶卿华,倪绍祥,郭剑.栅格数据矢量化及其存在问题的解决[J].现代测绘,2004,27(3):8-11. 被引量:12
  • 2朱海洲,姚耀文.地图等高线矢量化的图像处理[J].小型微型计算机系统,1996,17(12):43-46. 被引量:6
  • 3VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [C]. //Proc. of the 2001 IEEE Computer Society Conference, Computer Vision and Pattern Recognition, 2001 :I-511-518.
  • 4CHEN Mao Lin, MA Geng Yu, KEE S. Multi-view human head detection in static images [C]. //MVA2005 IAPR Con- ference on Machine Vision Application, Tsukuba Science City, Japan, May 16-18, 2005: 100-103.
  • 5SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions [J]. Machine Learning, 1999,37(3):297-336.
  • 6ROWLEY H. Neural network-based face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(1):23-38.
  • 7Kim J W, Choi K S, Park W S, et al. Robust real-time people tracking system for security [ J ]. IBS Journal, 2002,2 ( 3 ) : 184- 190.
  • 8Yu Shengsheng, Chen Xiaoping, Sun Weiping, et al. A robust method for detecting and counting people [ C ]//Proceedings of International Conference on Audio, Language and Image Processing. Piscataway, NJ, USA : 1EEE Press, 2008 : 1545-1549.
  • 9Chen Thouho, Hsu Chewei. An automatic bi-directional passing- people counting method based on color Image processing [ C ]// Proceedings of 37th IEEE International Camahan Conference on Security Technology. Piscataway, N J, USA : IEEE Press, 2003 : 200-207.
  • 10Septian H, Tao segmentation and Conference on Ji, Tan Yappeng. People counting by video tracking [ C ]//Proceedings 9th International Control, Automation, Robotics and Vision. Piscataway, NJ, USA: IEEE Press,2006 : 1-4.

共引文献55

同被引文献67

  • 1BENABBAS Y, IHADDADENE N, YAHIAOUI T, et al. Spa- tio-temporal optical flow analysis for people counting [C]//Proc. of 7th IEEE International Conference on Advanced Video and Signal Based Sueillance. Boston, USA: IEEE Press, 2010: 212-217.
  • 2JAIJING K, KAEWTRAKULPONG P,SIDDHICHAI S. Object de- tection and modeling algorithm tbr automatic visual people count- ing system[C]//Proc. 6111 International Conference on Electrical Engineering/Electronic, Computer, Telecommunication and Infor- mation Technology. [S.l.] : IEEE Press, 2009 : 1062-1065.
  • 3LU Huchuan, ZHANG Ruijuan, CHEN Yenwei. Head detection and tracking by mean-shift and kahnan fiter[C]//Prnc. 3rd Interna- tional Conference on Innovative Computing information and Con- trol.[S.l.] : IEEE Press, 2008 : 357-360.
  • 4JAIJING K, KAEWTRAKULPONG P,SIDDHICHAI S. Object de-tection and modeling algorithm for automatic visual people count- ing system[C]//Proc. 6th International Conference on Electrical Engineering/Electronic, Computer, Telecommunication and Infor- mation Technology.[S.l.] : I EEE Press, 2009 : 1062-1065.
  • 5JIN Yonggang, MOKHTAR1AN F.Towards robust head tracking by particles[C]//Proc. IEEE International Conference on Image Processing. [S.1.]: IEEE Press, 2005 : 864-867.
  • 6YE Feng, LI Di, HUANG Jiexian, et al. Flaw detection on FPC solder surface[J]. Circuit World, 2012,38 (3) : 142-152.
  • 7CONG Yong,GONG Haifeng, ZHU Songchun, et al. Flow mosa- icking: real-time pedestrian counting without scene-specific learning[C]//Proc. IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR) 2009. Miami, USA: IEEE Press, 2009:1093-1100.
  • 8ANTIC B, LETIC D, CULIBRK D, et al. K-means based seg- mentation for reahime zenithal people counting [C]//Proc. 16th IEEE International Conference on Image Processing (ICIP). Cai- ro, Egypt:lEEE Press,2009: 2565-2568.
  • 9DINESH K V P, TESSAMMA T. Performance study of an im- proved legendre moment descriptor as region-based shape de- scriptor[J]. Pattern Recognition and Image Analysis, 2008 (1) : 23-29.
  • 10Yoon S M, Kuijper A. Human action recognition based on skeleton splitting. Eacpert Systems With Applica tions ,2013,40(17) .6848-6855.

引证文献8

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部