期刊文献+

基于自适应图的半监督学习方法 被引量:2

Adaptive Graph-Based Semi-Supervised Learning Method
下载PDF
导出
摘要 基于图的半监督学习方法中,图结构经常要预先设定,这就导致了在标签传递过程中,算法不能自适应地学习一个最优的图.为此,提出了一种基于自适应图的半监督学习方法.该方法通过迭代的优化方法同时学习到最优的图和标签.而且,在少量标记样本的情况下该方法也可以得到较高的分类准确率,并通过实验证明了该方法的有效性. In most graph-based semi-supervised methods, graph structure is often set in advance, which leads to the fact that the algorithm can't learn an optimal graph in the process of label propagation. Therefore, this paper proposes a method called Adaptive Graph-based Semi-supervised Learning Method (AGSSLM). This method can leam the optimal graph and label simultaneously by using the iterative optimization method. Moreover, this method can also obtain higher classification accuracy with fewer labeled samples. The experimental results validate the effectiveness of this method.
作者 梅松青
出处 《计算机系统应用》 2014年第2期173-177,共5页 Computer Systems & Applications
关键词 半监督学习 标签传递 优化算法 分类准确率 semi-supervised learning label Propagation optimization algorithm classification accuracy
  • 相关文献

参考文献13

  • 1尹学松,胡思良,陈松灿.基于成对约束的判别型半监督聚类分析[J].软件学报,2008,19(11):2791-2802. 被引量:51
  • 2Belkin M,Niyogi P,Sindhwani V. Manifold regularization:a geometric framework for learning from labeled and unlabeled examples[J].JOURNAL OF MACHINE LEARNING RESEARCH,2006.2399-2434.
  • 3Wang F,Zhang CS. Label propagation through linear neighborhoods[J].IEEE Trans on Knowledge and Data Engineering,2008,(01):55-67.
  • 4Belkin M,Matveeva L,Niyogi P. Regularization and semi-supervised learning on large graphs[J].Lecture Notes in Computer Science,2004.624-638.
  • 5Yan SC,Wang H. Semi-supervised learning by sparse representation[J].Proc of SDM,2009.792-801.
  • 6Zhao Z,Liu H. Spectral feature selection for supervised and unsupervised learning[A].New York,ACM,2007.1151-1157.
  • 7Yang SH,Zha HY,Zhou SK,Hu BG. Variational graph embedding for globally and locally consistent feature extraction[A].Berlin:Springer-Verlag,2009.538-553.
  • 8Zhou D,Bousquet O,Lal T,Weston J,Scholkopf B. Learning with local and global consistency[J].Advances in Neural Information Processing Systems,2004.321-328.
  • 9Asuncion A,Newman D. UCI Machine Learning Repository[OL].http://ergodicity.net/tag/machine-learning/,2007.
  • 10陈锦秀,姬东鸿.基于图的半监督关系抽取[J].软件学报,2008,19(11):2843-2852. 被引量:16

二级参考文献62

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2张素香,文娟,秦颖,袁彩霞,钟义信.实体关系的自动抽取研究[J].哈尔滨工程大学学报,2006,27(B07):370-373. 被引量:10
  • 3何婷婷,徐超,李晶,赵君喆.基于种子自扩展的命名实体关系抽取方法[J].计算机工程,2006,32(21):183-184. 被引量:25
  • 4董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 5Basu S, Banerjee A, Mooney RJ. A probabilistic framework for semi-supervised clustering. In: Boulicaut JF, Esposito F, Giannotti F, Pedreschi D, eds. Proc. of the 10th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2004.59-68.
  • 6Bilenko M, Basu S, Mooney RJ. Integrating constraints and metric learning in semi-supervised clustering. In: Brodley CE, ed. Proc. of the 21st Int'l Conf. on Machine Learning. New York: ACM Press, 2004. 81-88.
  • 7Tang W, Xiong H, Zhong S, Wu J. Enhancing semi-supervised clustering: a feature projection perspective. In: Berkhin P, Caruana R, Wu XD, eds. Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2007. 707-716.
  • 8Basu S, Banerjee A, Mooney RJ. Active semi-supervision for pairwise constrained clustering. In: Jonker W, Petkovic M, eds. Proc. of the SIAM Int'l Conf. on Data Mining. Cambridge: MIT Press, 2004. 333-344.
  • 9Yan B, Domeniconi C. An adaptive kernel method for semi-supervised clustering. In: Fiirnkranz J, Scheffer T, Spiliopoulou M, eds. Proc. of the 17th European Conf. on Machine Learning. Berlin: Sigma Press, 2006. 18-22.
  • 10Yeung DY, Chang H. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recognition, 2006,39(5):1007-1010.

共引文献248

同被引文献32

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2吴青,刘三阳,郑巍.基于乘性规则的支持向量机[J].智能系统学报,2007,2(2):74-77. 被引量:3
  • 3Belkin M, Niyogi P, Sindhwani V. Manifold regularization : A geometric framework for learning from labeled and unlabeled examples [ J ]. Jour- nal of Machine Learning Research ,2006,7 ( 11 ) :2399 - 2434.
  • 4He Xiaofei, Yan Shucheng, Hu Yuxiao. Face reeo-gnition using lapla- cianfaces[J]. IEEE Transaction on Pattern Analysis and Machine In- telligence,2005,27 (3) :328 - 340.
  • 5Zhu Xiaojin, Ghahramani Z. Learning from labeled and unlabeled data with label propagation, C-MU-CALD-02-107 [ R ]. Pittsburghers : Carne- gie Mellon University,2002.
  • 6Barber M J. Deteeting network communities by propagating labels under constraints [ J 1. Physical review E, Statistical, nonlinear, and soft matter physics,2009,80(2) :26 - 129.
  • 7Pangning T,Michael S. Introduction to data mining[ M]. Postsand Tele- com Press ,2011 : 156 - 168.
  • 8Bennett K P, Demiriz A. Semi-supervised support vector machines [ C ]//Proceeding of Neural Information Processing Systems, 1998.
  • 9HarringtonP.机器学习实战[M].北京:人民邮电出版社,2013.
  • 10Zhu Xiaojin. Semi-supervised learning literature survey TR1530[ R]. Madi- son :Department of Co-mputer Sciences ,University of Wisconsin,2008.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部