期刊文献+

基于混沌搜索的特征选择方法 被引量:4

Feature Selection Based on Chaos Search
下载PDF
导出
摘要 针对特征选择效率较低的问题,提出了一种基于混沌搜索的特征选择(CSFS)方法。建立候选特征-混沌变量映射模型,将候选特征映射到混沌空间,实现候选特征向量与混沌变量之间的相互转化;利用混沌变量迭代演化进行特征选择;利用分类器对得到的特征向量进行性能评价。以焊缝缺陷特征为例对该特征选择方法进行了有效性验证,并与基于遗传算法的特征选择(GAFS)方法进行了对比。实验结果表明:在获取的特性向量的识别性能相当的情况下,CSFS方法的耗时仅为GAFS方法的61.1%. To improve the efficiency of feature selection, a feature selection method based on chaos search (CSFS) is proposed. Firstly, a mapping model for feature candidates and chaotic variables is established,which maps the feature candidates to the chaos space and realizes the interconversion between them. Secondly, the feature selection is carried out by means of the evolution of the chaotic variable. Finally, the classifier is used to evaluate the obtained feature vector. The features of weld defects are taken for example to verify the proposed method, which is compared with a gene-algorithm-based feature selection (GAFS) method. The experimental results demonstrate that the computation time of CSFS is only 61. 1% of that by GAFS in the case of obtaining the feature vectors with the same recognition performance.
出处 《兵工学报》 EI CAS CSCD 北大核心 2013年第12期1616-1619,共4页 Acta Armamentarii
基金 国家高技术研究发展计划项目(2007AA04Z121)
关键词 系统学 模式识别 特征选择 混沌搜索 systematics pattern recognition feature selection chaos search
  • 相关文献

参考文献10

  • 1Da Silva R R, Cal6ba L P, Siqueira M H S, et al. Pattern recognition of weld defects detected by radiographic test [ Jl. Ndt & E International, 2004, 37 (6) : 461 - 470.
  • 2Ekbal A, Saha S. Combining feature selection and classifier ensemble using a muhiobjective simulated annealing approach: application to named entity recognition [ J ]. Soft Computing, 2013, 17 (1): 1-16.
  • 3Wang Y, Li L, Ni J, et al. Feature selection using tabu search with long- term memories and probabilistic neural networks [ J ]. Pattern Recognition Letters, 2009, 30 (7) : 661 -670.
  • 4Kannan A, Jr Maguire G Q, Sharma A, et al. Genetic algorithm based feature selection algorithm for effective intrusion detection in cloud networks [ C ] // 12th International Conference on Data Mining Workshops. Stockholm: IEEE Conference Publication, 2012, 416-423.
  • 5Perez M, Marwala T. Microarray data feature selection using hybrid genetic algorithm simulated annealing [ C ] // 27th Convention of Electrical & Electronics Engineers in Israel. Johannesburg : IEEE Conference Publication ,2012 : 1 - 5.
  • 6Ammaruekarat P, Meesad P. A multi-objective memetic algorithm based on chaos optimization [ J ]. Applied Mechanics and Materials, 2012, 130 (2012) : 725 -729.
  • 7Wen Z B, Yue Y X, Yue Q X. Chaos optimization algorithm for vehicle routing problem[J]. Advanced Materials Research, 2012, 538 (2012) :2722 -2726.
  • 8Tavazoei M S, Haefi M. An optimization algorithm based on chaotic behavior and fractal nature [ J ] Journal of Computational and Applied Mathematics, 2007, 206 (2) : 1070 -1081.
  • 9Liao G C, Tsao T P. Application embedded chaos search immune genetic algorithm for short-term unit commitment [ J ]. Electric Power Systems Research, 2004, 71 (2) : 135 -144.
  • 10Shen Q M, Gao J M, Li C. Automatic classification of weld defects in radiographic images [ J ]. Insight, 2010, 52 (3) : 134 - 139.

同被引文献47

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部