期刊文献+

数据挖掘常用分类算法研究 被引量:2

Data Mining Classification Algorithm
下载PDF
导出
摘要 数据库、数据仓库以及其他存储信息库中潜藏着很多与商业、科学研究等活动的决策有关的数据和知识。对于数据挖掘中的数据分析,通常有两种常见的方法,即分类和预测,首先对数据库中的数据进行分类归纳,然后根据分类规则可以得到比较有价值的数据,然后我们可以根据这个数据来预测得到一些包含未来趋势的信息。在常见的分类算法中,决策树算法是一个有着很好扩展性的算法,可以应用到大型数据库中,可以对多种数据类型进行处理,分类模式容易转化为分类规则,结果也十分的浅显易懂易于理解。该文主要先介绍了几种常用的分类算法,然后具体介绍决策树算法的过程以及在分类算法实际应用中的优缺点。 Databases, data warehouses and other storage repository with a lot of potential commercial, scientific research and other activities related to the decision-making data and knowledge. For data analysis, data mining, there are usually two common meth-ods, ie, classification and prediction, the first data in the database were classified summarized, then you can get more valuable data in accordance with the classification rules, then we can based on this data Some information contained predicted future trends. In common classification algorithms, decision tree algorithm is an algorithm has good scalability, can be applied to large databases, can handle a variety of data types, classification mode easily converted into classification rules, the results are very plain and easy understand easily understood. This paper first introduces several commonly used classification algorithms, and then introduced the process of decision tree algorithm and the advantages and disadvantages in practical application of classification algorithms.
作者 王明星 刘锋 WANG Ming-xing,LIU Feng (The College of Computer Science and Technology in Anhui University, Hefei 230601,China)
出处 《电脑知识与技术》 2013年第12期7667-7669,共3页 Computer Knowledge and Technology
关键词 数据挖掘 分类算法 人工智能 决策树 data mining classification algorithm artificial intelligence decision Tree
  • 相关文献

参考文献3

  • 1郭超峰,李梅莲.基于ID3算法的决策树研究与应用[J].许昌学院学报,2007,26(2):107-111. 被引量:10
  • 2Pang-Ning Tan;SteinBach M;Kumar V;范明;范宏建.数据挖掘导论[M]{H}北京:人民邮电出版社,2007.
  • 3刘惟一;李维华.智能数据分析[M]{H}北京:科学出版社,2007.

二级参考文献6

  • 1洪家荣,丁明峰,李星原,王丽薇.一种新的决策树归纳学习算法[J].计算机学报,1995,18(6):470-474. 被引量:92
  • 2Michalski R S,Mozetic I,Hong J R.The multi-purpose incremental learning system AQ15 and its testing application to three medical domains[J].In Proc.AAAI,USA,1986,1041-1046.
  • 3Quinlan J R.Discovering rules from large collections of examples:A case study[M],In:Michie,D.,editor,Expert Systems in the Microelectronic Age,Edinburgh University Press,Scotland,1979.
  • 4Quinlan J R.Induction of decision trees[J].Machine Learning,1986,1(1):81-106.
  • 5Tu Pei-Lei,Chung Jen-Yao.A new decision-tree classification algorithm for machine learning[C],In:Proceedings of the 1992 IEEE International Conference on Tools for Artificial Intelligence,Arlington Virginia.USA:IEEE Computer Society,1992,370-377.
  • 6Breslow L A,Aha D W.Simplifying decision trees:A survey[J].Knowledge Engineering Review,1997,12(1):1-40.

共引文献9

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部