期刊文献+

植物KUP/HAK/KT家族钾转运体研究进展 被引量:14

Research Progress on KUP/HAK/KT Potassium Transporter Family in Plant
下载PDF
导出
摘要 钾是植物必不可缺的大量元素,作为细胞内的主要溶质,参与植物的生长发育过程。植物通过钾通道和钾转运体两种方式吸收钾营养。钾转运体包括4个家族,其中KUP/HAK/KT家族成员最多,且研究最为深入。其成员是广泛存在于植物细胞质膜和液泡膜上的一种跨膜蛋白,多具有高亲和性钾吸收功能的转运体。KUP/HAK/KT转运体不仅在植物对K+的吸收与转运过程中发挥作用,也参与调节植物的生长发育。综述了植物KUP/HAK/KT家族的分类、组织定位、功能和表达调控等方面的研究进展,以期为研究植物的钾营养吸收机制提供理论参考。 Potassium is an essential mineral element in cytolist for plant growth and development. Plants absorb potassium through potassium channels or transporters. There are 4 potassium transporters families, among which KUP/HAK/KT families have the largest family members and received most thorough studies. Its members are kinds of transmembrane protein, which exist on plant plasma or tonoplast and have high affinity with K+. KUP/HAK/KT transporter not only play roles in plant absorbing and transporting K+, but also take part in adjusting plant growth and development. This paper expounded the research progress on classification, tissue localization, physiological function and expression regulation of the KUP/HAK/KT family, so as to provide theoretical references for studying the mechanism of plant potassium absorption.
出处 《中国农业科技导报》 CAS CSCD 北大核心 2013年第6期92-98,共7页 Journal of Agricultural Science and Technology
基金 中央级公益性科研院所基本科研业务费专项(2012ZL058)资助
关键词 钾转运体 KUP HAK KT 分类 功能 表达调控 potassium transporter KUP/HAK/KT classification function expression regulation
  • 相关文献

参考文献2

二级参考文献52

  • 1曹志洪,胡国松,周秀如,李仲林,张新,王恩沛,赵振山,康健.土壤钾和微量元素行为的调控与烟叶品质的关系 Ⅰ.土壤—烟株系统钾素调控的理论分析[J].土壤,1993,25(3):119-122. 被引量:13
  • 2Ahn, S.J., Shin, R., and Schachtman, D.P. (2004). Expression of KT/ KUP genes in Arabidopsis and the role of root hairs in K^+ Uptake. Plant Physiol. 134, 1135-1145.
  • 3Aleman, E, Nieves-Cordones, M., Martinez, V., and Rubio, E (2009). Differential regulation of the HAK5 genes encoding the highaffinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana. Environ. Exp. Bot. 65, 263-269.
  • 4Amtmann, A., and Armengaud, P. (2009). Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12, 275-283.
  • 5Amtmann, A., Armengaud, R, and Volkov, V. (2004). Potassium nutrition and salt stress. In Membrane Transport in Plants, Blatt, M.R., ed. (Oxford: Blackwell), pp. 293-339.
  • 6Armengaud, R, Breitling, R., and Amtmann, A. (2004). The potassiumdependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136, 2556-2576.
  • 7Ashley, M.K., Grant, M., and Grabov, A. (2006). Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 57, 425-436.
  • 8Benlloch, M., Moreno, I., and Rodriguez-Navarro, A. (1989). Two modes of rubidium uptake in sunflower plants. Plant Physiol. 90, 939-942.
  • 9Bertl, A., Reid, J.D., Sentenac, H., and Slayman, C.L. (1997). Functional comparison of plant inward-rectifier channels expressed in yeast. J. Exp. Bot. 48, 405-413.
  • 10Bhandal, I.S., and Malik, C.R (1988). Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int. Rev. Cytol. 110, 205-254.

共引文献41

同被引文献132

引证文献14

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部