期刊文献+

广州、长沙、昆明气温对非意外死亡的短期效应研究 被引量:13

The short-term effect of temperature on non-accidental mortality in Guangzhou, Changsha and Kunming
原文传递
导出
摘要 目的 探讨广州、长沙、昆明气温与居民死亡的关系,评估气温相关的非意外死亡风险,为制定应对气候变化的政策提供科学依据.方法 收集2006-2009年广州、长沙、昆明逐日的气象和居民死亡数据,建立分布滞后非线性模型(DLNM),以病例交叉设计控制时间长期趋势,分析在不同滞后情况(0 ~2、0~18、0~27 d)下气温与居民非意外死亡的关系.结果 2006-2009年间广州、长沙、昆明的非意外死亡人数均表现明显的周期性,即冬季日死亡人数最高,春、秋两季的日死亡人数相对较低,夏季有个别高温日出现死亡例数升高.各城市的气温与日死亡数的关系呈“L”型(广州、昆明)或“U”型(长沙),广州、长沙、昆明日均气温分别高于28.2℃、24.5℃、23.2℃时,每升高1℃,在滞后0~2d的条件下,居民非意外死亡的RR值分别上升4.56% (95% CI:2.74% ~6.63%)、5.66% (95% CI:0.22% ~ 12.65%)、-3.94%(95% CI:-32.77% ~ 39.01%);而当日均气温分别低于24.8 ℃、20.0℃、17.3℃时,每下降1℃,居民非意外死亡的RR值均升高(广州滞后0~18d时,RR =3.28%,95% CI:2.41% ~4.10%;长沙滞后0~2d时,RR=1.35%,95% CI:0.31% ~1.77%;昆明滞后0~27 d时,RR=2.42%,95% CI:1.08% ~ 3.27%).高温对人群死亡的影响表现为急性的短期效应,而冷效应比热效应持续的时间长.结论 广州、长沙、昆明高温和低温均引起居民死亡风险升高;低温产生的效应相对延迟,但持续的时间较长. Objective To explore the relationship between temperature and non-accidental mortality in Guangzhou,Changsha and Kunming;to evaluate the temperature-related risk of mortality; and thereby to provide scientific evidence for enacting the policy to tackle climate changes.Method Daily meteorology data and mortality data were collected in 2006-2009 in Guangzhou,Changsha and Kunming.Distributed lag non-linear model (DLNM) was established and applied in a case-crossover design,which controlled the secular trend of time,to estimate the specified effects of temperature on non-accidental mortality at conditions of lag 0-2,lag 0-18 and lag 0-27 days,respectively.Result An obvious seasonal periodicity was found in non-accidential mortality in Guangzhou,Changsha and Kunming during 2006-2009.The mortality number was comparatively high in the winters,and some high temperature days in summer; but was comparatively low in springs and autumns.An L-shaped relationship was found between temperature and mortality in Guangzhou and Kunming and a U-shaped relationship was found in Changsha.When daily mean temperature exceeded 28.2 ℃,24.5 ℃ and 23.2 ℃,as average temperature increase 1 ℃,non-accidental mortality increased 4.56% (95% CI:2.74%-6.63%),5.66% (95% CI:0.22%-12.65%),-3.94% (95% CI:-32.77%-39.01%),respectively; when daily mean temperature below 24.8 ℃,20.0 ℃ and 17.3 ℃,as average temperature decrease 1 ℃,the corresponding increase in non-accidental mortality were 3.28% (95 % CI:2.41%-4.10%) (lag 0-18 days),1.35 % (95 % CI:0.31%-1.77 %) (lag 0-2 days) and 2.42% (95% CI:1.08%-3.27%)(lag 0-27 days),respectively.The effects of hot weather were acute and short term; while the effects of cold weather had a several days delay,but a longer persistence.Conclusions Extreme cold and hot temperature could increase the risk of non-accidental mortality in Guangzhou,Changsha and Kunming.The effects of cold weather had a several days delay,but a longer persistence.
出处 《中华预防医学杂志》 CAS CSCD 北大核心 2014年第1期38-43,共6页 Chinese Journal of Preventive Medicine
基金 中英瑞适应气候变化项目(ACCC/21010528)
关键词 死亡 温度 气候变化 分布滞后非线性模型 Mortality Temperature Climate change Distributed lag non-linear model
  • 相关文献

参考文献27

  • 1赵金琦.我国三城市气温对人群超额死亡的影响[M].北京:中国疾病预防控制中心,2010.
  • 2陈横,李丽萍,陈英凝.沿海城市高温热浪与每日居民死亡关系的研究[J].环境与健康杂志,2009,26(11):988-991. 被引量:18
  • 3Armstrong B. Models for the relationship between ambient temperature and daily mortality[ J ]. Epidemiology, 2006,17 (6) : 624 -631.
  • 4Schwartz J. The distributed lag between air pollution and daily deaths [ J ]. Epidemiology, 2000,11 ( 3 ) : 320-326.
  • 5Gasparrini A, Armstrong B, Kenward MG. Distributed lag non- linear models[ J]. Statistics in Medicine, 2010, 29 (21) : 2224- 2234.
  • 6Zanobetti A, Schwartz J, Samoli E, et al. The temporal pattern of mortality responses to air pollution: A multfcity assessment of mortality displacement[ J]. Epidemiology, 2002, 13 ( 1 ) : 87-93.
  • 7Braga AL, Zanobetti A, Schwartz J. The time course of weather- related deaths[J]. Epidemiology, 2001,12(6):662-667.
  • 8Anderson BG, Bell ML. Weather-related mortality : how heat, cold, and heat waves affect mortality in the United States [ J]. Epidemiology, 2009,20(2): 205-213.
  • 9Guo Y, Barnett AG, Pan X, et al. The Impact of Temperature on Mortality in Tianjin, China: A Case-Crossover Design with a Distributed Lag Nonlinear Model [ J ]. Environ Health Perspect, 2011,119(12) : 1719-1725.
  • 10Gasparrini A. Distributed lag linear and non-linear models in R: The package dlnm[J]. J Star Softw,2010, 43(8) : 1-20.

二级参考文献76

共引文献68

同被引文献94

引证文献13

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部