期刊文献+

基于空间分集的高空平台光链路性能研究 被引量:3

Performance Analysis of High Altitude Platform Optical Communication Links with Spatial Diversity
原文传递
导出
摘要 针对高空平台不稳定性以及大气湍流对平台光通信性能的影响,提出利用空间分集技术改善高空平台光通信链路性能。在系统采用开关键控(OOK)调制条件下,利用矩母函数特性分别得到采用协作分集技术和多输入多输出(MIMO)技术的高空平台光链路误码率表达式,并求解协作通信系统中继平台的最优位置。仿真结果表明:协作分集技术与光MIMO技术对高空平台光链路性能的改善效果受到跟瞄误差的限制。采用发射选择分集的光MIMO技术对光链路的误码率性能最好。与采用重复码的MIMO方法相比,协作分集技术更适用于跟瞄误差大的通信系统。中继平台的最优位置与中继策略以及跟瞄误差无关。在中继平台最优位置附近,采用协作分集的光链路性能优于采用重复码MIMO光通信链路。 Because of the position instability and atmospheric turbulence are two of the major influences on high altitude platforms (HAPs) optical links, the method to improve the performance of HAPs optical links using spatial diversity is presented. The expressions of HAPs optical links bit error rates (BER) for multiple-input multiple-output (MIMO) scheme and cooperative diversity scheme are obtained with on off keying (0OK) modulation system. And the optimum place for the relay platform is shown. The simulation results show that the improvement of cooperative diversity and optical MIMO on HAPs optical communications may be restricted by tracking error. The BER performance of MIMO optical links based on transmit laser selection is the best. Compared with MIMO optical links based on repetition coding, cooperative diversity is suited to optical communication links with bigger pointing error. The optimum place of the relay platform for HAPs optical links with cooperative diversity is independent on relay strategy and pointing error. The cooperative diversity scheme is superior to the HAPs MIMO optical links with repetition coding when the place of the relay platform is optimum.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第1期33-40,共8页 Acta Optica Sinica
基金 国家自然科学基金(61205002)
关键词 光通信 高空平台 协作分集 多输入多输出 optical communications high altitude platform cooperative diversity multiple-input multiple-output
  • 相关文献

参考文献3

二级参考文献40

  • 1敖发良,贾转红,朱清林.基于大气信道链路的混合FSO/RF系统性能分析[J].光通信技术,2006,30(12):55-56. 被引量:2
  • 2FRANZ Fidler,MARKUS Knapek and JOACHIM Horwath,et al.Optical communication for high-altitude platforms[J].IEEE journal of selected topics in quantum electronics(Invited Paper),2010:1-13.
  • 3DRIK Giggenbach,ROBERT Purvinsks and MARKUS Wenner,et al.Stratospheric optical inter-platform links for high altitude platforms[C].The 20th AIAA international communication satellite conference and exhibit.2002,1910:1-15.
  • 4HENNES Henniger,DIRK Giggenbacn and JOACHIM Horwath,et al.Evaluation of optical up-and downlinks from high altitude platforms using IM/DD[J].proceeding of SPIE,vol.5712,2005(24):10-12.
  • 5GRACE D,CHEN G and WHITE G P,et al. Improve the system capacity of mm-wave broadband services using multiple high altitude platforms[J]. GLOBECOM,2003,8(2):700-709.
  • 6MIRKO Antonini,SILVELLO Betti and VALARIA Carrozzo,et al.Feasibility analysis of a HAP-LEO optical link for data relay purposes[C]. Aerospace Conference,2006:7-13.
  • 7ITU-T Recommendation G.694.1.Spectral grids for WDM application:DWDM frequency grid[S].June 2002.
  • 8MOHORCIC M,VILHAR A and BERIOLLI M,et al.Werner.Optical Transport Network Based on a Meshed HAP System With Interplatform Links[C]. Advanced Satellite Mobile Systems(ASMS) Conference 2006,Herrsching,Germany,2006:124-128.
  • 9F. Franz, K. Markus, H. Joachim et al.. Optical communication for high-altitude platforms[J]. IEEE J. Sel. Top. Quantum Electron. (Invited Paper), 2010, 16(5): 1058-1070.
  • 10R. K. Sankit, B. Koushik, K. Deman. A most promising HAPs technology for next generation wireless communication systems[C]. Proceedings of the 4th National Conference, 2010. 1-6.

共引文献5

同被引文献49

  • 1姜会林,刘志刚,佟首峰,刘鹏.机载激光通信环境适应性及关键技术分析[J].红外与激光工程,2007,36(z1):567-570. 被引量:45
  • 2刘立人.卫星激光通信 Ⅰ链路和终端技术[J].中国激光,2007,34(1):3-20. 被引量:77
  • 3J H Shapiro. Imaging and Optical Communication through Atmospheric Turbulence[M].//John W Strohbehn. Laser Beam Propagation in the Atmosphere, Berlin: Springer Berlin Heidelberg, 1978: 171-222.
  • 4K E Wilson, P R Leatherman, R Cleis, et al.. Results of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) Experiment[R]. TDA Progress Report, JPL-TDA-PR-42-131, 1997: 1-13.
  • 5Jacob J, Macdonald T, Walther F. Airborne laser communications: The challenges of the propagation medium[C]. Military Communications Conference, 2006: 1-6.
  • 6Gangl M E, Fisher D S, Zimmermann J, et al.. Airborne laser communication terminal for intelligence, surveillance and reconnaissance[C]. SPIE, 2004, 5550: 93.
  • 7M M Fernandez, V A Vilnrotter. Coherent optical receiver for PPM signals received through atmospheric turbulence: Performance analysis and preliminary experimental results[C]. SPIE, 2004, 5338: 151-162.
  • 8M M Fernandez, V A Vilnrotter, R Mukai, et al.. Coherent optical array receiver experiment: Design, implementation and BER performance of a multichannel coherent optical receiver for PPM signals under atmospheric turbulence[C]. SPIE, 2006, 6105: 61050R.
  • 9K E Wilson, M Jeganathan, J R Lesh, et al.. Results from Phase-1 and Phase-2 GOLD Experiments[R]. TDA Progress Report, JPL-TDA-PR-42-128, 1997.
  • 10V Vilnrotter, M Srinivasan. Optical communications through atmospheric turbulence using photodetector arrays[C]. SPIE, 2001, 4272: 282-292.

引证文献3

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部