期刊文献+

基于L^1范数和曲波系数双约束的稀疏角度微分相位衬度计算机层析成像重建方法 被引量:3

Sparse Angular Differential Phase-Contrast Computed Tomography Reconstruction Using L^1-Norm and Curvelet Constraints
原文传递
导出
摘要 微分相位衬度计算机层析成像法(DPC-CT)是一种新的X射线无损检测方法。与传统方法相比,该方法在检测弱吸收物质时优势明显。但DPC-CT技术需要进行多次扫描后才能获取足够的样品信息,这必将导致很长的辐射时间和巨大的辐射剂量。因此,研究在稀疏角度条件下的DPC-PC重建算法就显得尤为重要。分析了DPCCT的特点,在凸集投影(POCS)的理论框架下,将L1范数、曲波系数约束和经典的代数迭代算法(ART)相结合提出了一种适合DPC-CT的重建算法。数值模拟和实验的结果表明,该方法可以根据少量投影数据获得较好的重建结果。 Differential phase contrast computed tomography (DPC-CT) is a novel X-ray inspection method which has obvious advantage in detecting weak absorption substance compared with conventional CT reconstruction methods. However, DPC-CT usually need to scan many times in order to obtain enough refraction angle information, which leads to unacceptably long exposure reconstruction algorithm is particularly time and huge X-ray doses. Thus, the study of sparse angular DPC-CT important. After analyzing the characteristics of the DPC-CT. Based on the theoretical framework of projection on convex set (POCS), a reconstruction algorithm for DPC-CT is proposed by combining L1 norm, curvelet coefficient constraint and classical algebra reconstruction technique (ART). The numerical simulation and experimental results show that the quality of the sparse angular DPC-CT reconstructions. proposed algorithm can significantly improve the image
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第1期89-100,共12页 Acta Optica Sinica
基金 国家自然科学基金(61071210)
关键词 成像系统 微分相位衬度计算机层析成像 稀疏表达 凸集投影法 L1范数 曲波变换 imaging systems differential phase-contrast computed tomography sparse expression~ projection onconvex set El-norm curvelet
  • 相关文献

参考文献2

二级参考文献21

  • 1Chapman D, Thomlinson W, Arfelli F et al. Rev. Sci. Instrum., 1996, 67:3360.
  • 2Dilmanian F A, ZHONG Z, REN B et al. Phys. Med. Biol., 2000, 45:933-46.
  • 3Pavlov K M, Kewish C M, Davis J R. et al. J. Phys. D: Appl. Phys., 2001, 34:A168-72.
  • 4Maksimenko A, Ando M, Hiroshi S et al. Appl. Phys. Lett., 2005, 86:124105.
  • 5HUANG Z F, KANG K J, ZHANG Li et al. Appl. Phys. Lett., 2006, 89:041124.
  • 6ZHU P P, WANG J Y, YUAN Q X et al. Appl. Phys. Lett., 2005, 87:264101.
  • 7LIU Y J, ZHU P P, CHEN B et al. Phys. Med. Biol., 2007, 52:L5-L13.
  • 8ZHANG Kai, ZHU Pei-Ping, HUANG Wan-Xia et al. Acta Physica Sinica, 2008, 57(6): 3410-3418.
  • 9CHEN Z Q, DING F, HUANG Z F et al. Chin. Phys. C (HEP &: NP), 2009, 33(11): 961-966.
  • 10HUANG Z F, KANG K J, ZHU P P et al. Phys. Med. Biol., 2007, 52:1-12.

共引文献9

同被引文献58

  • 1赵瑞珍,刘晓宇,LI ChingChung,SCLABASSI Robert J,孙民贵.基于稀疏表示的小波去噪[J].中国科学:信息科学,2010,40(1):33-40. 被引量:25
  • 2S Kumar, P Kumar, M Gupta, et al. Performance comparison of median and Wiener filter in image de-noising [J]. International Journal of Computer Applications, 2010, 12(4): 27-31.
  • 3S Esakkirajan, T Veerakumar, A N Subramanyam, et al. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter [J]. IEEE Signal Processing Letters, 2011, 18(5): 287-290.
  • 4M Nikolova. A variational approach to remove outliers and impulsive noise [J]. Journal of Mathematical Imaging and Vision, 2004, 20(1): 99-120.
  • 5J F Aujol, G Gilboa, T Chan, et al. Structure-texture image decomposition-modeling, algorithm, and parameter selection [J]. International Journal of Computer Vision, 2006, 67(1): 111-136.
  • 6C A Micchelli, L X Shen. Proximity algorithms for image models: Denosing [J]. Inverse Problems, 2011, 27(4): 5009.
  • 7C A Micchelli, L X Shen, Y S Xu, et al. Proximity algorithm for the l1/TV image model [J]. Advances in Computational Mathematics, 2013, 38(2): 401-426.
  • 8A Beck, M Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM J Imaging Sciences, 2009, 2(1): 183-202.
  • 9A Beck, M Teboulle. Fast gradient-based algorithms for constrained total variation denoising and deblurring problems [J]. IEEE Trans Image Processing, 2009, 18(11): 2419-2434.
  • 10L Rudin, S Osher, E Fatemi. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(1): 259-268.

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部