期刊文献+

铣削三维物理仿真材料本构方程参数获取方法

Method to obtain material model parameters used in three dimensional-simulating milling process
原文传递
导出
摘要 针对目前金属切削过程的三维物理仿真精度低的问题,以Power Law模型为材料本构方程,提出一种将准静态压缩实验、霍普金森压杆实验和正交切削实验相结合,获取材料本构方程参数的方法.该方法利用正交切削实验消除压杆实验与实际切削过程的差异,使得所获取的材料本构方程参数能够准确地反映切削过程中的金属材料变形行为.应用该方法提取合金结构钢SCM440H的Power Law本构方程参数,将所获取的材料本构方程参数应用到该材料的端面铣削过程的三维有限元仿真,最后将铣削实验与仿真结果进行对比,表明了该本构方程的准确性,证明了所提出的材料本构方程参数获取方法的有效性. The objective of this paper is to improve the accuracy of the material models for 3D simula- ting metal cutting process. A method for extracting the parameters in Power Law constitutive model was proposed. In this method, quasi-static pressure bar test, Hopkinson pressure bar test and orthog- onal cutting test were used. The orthogonal cutting test was to revise the difference between the con- ditions of the pressure bar test and cutting process, and the deformation behavior of the material in cutting process was described more precisely. As an example of the proposed method, the Power Law constitutive model of alloy steel SCM440H was obtained. Three dimensional finite element simulation of face milling process was performed and the simulation results are in good accordance with the ex- perimental data, which prove the method effective in obtained the material constitutive model for cut- ting process simulation.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第12期18-23,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50975153)
关键词 端面铣削 三维物理仿真 材料本构方程 POWER Law模型 合金结构钢 face milling~ 3D physical simulation~ material constitutive equation~ Power Law model^alloy steel
  • 相关文献

参考文献12

  • 1Taylan A,Victor V. Status of process simulation using 2D and 3D finite element method "what is practical today? What can we expect in the future?"[J].{H}Journal of Materials Processing Technology,1997.49-63.
  • 2李初晔,王焱,孟月梅.金属切削过程有限元数值模拟[J].航空制造技术,2010,53(22):28-33. 被引量:3
  • 3Chaparro B M,Thuillier S,Menezes L F. Material parameters identification:gradient-based,genetic and hybrid optimization algorithms[J].{H}COMPUTATIONAL MATERIALS SCIENCE,2008.339-346.
  • 4丁杰雄,崔海龙,张川东,付陆元.面向金属切削过程数值模拟的材料本构方程和刀-屑摩擦特性[J].四川大学学报(工程科学版),2012,44(6):181-185. 被引量:8
  • 5Sasso M,Newaz G,Amodio D. Material characterization at high strain rate by Hopkinson bar tests and finite element optimization[J].{H}Material Science and Engineering,2008,(1-2):289-300.
  • 6Dabboussi W,Nemes J A. Modeling of ductile fracture using the dynamic punch test[J].{H}International Journal of Mechanical Sciences,2005,(08):1282-1299.doi:10.1016/j.ijmecsci.2005.01.015.
  • 7Chandrasekaran H,M'saoubi R,Chazal H. Modelling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar tests[J].{H}MACHINING SCIENCE AND TECHNOLOGY,2005,(01):131-145.
  • 8Shatla M,Kerk C,Altan T. Process modeling in machining,part Ⅰ:determination of flow stress data[J].{H}INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,2001,(10):1511-1534.
  • 9Pujana J,Arrazola P J,M'saoubi R. Analysis of the inverse identification of constitutive equations applied in orthogonal cutting process[J].{H}INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,2007,(14):2153-2161.doi:10.1016/j.ijmachtools.2007.04.012.
  • 10Shi J,Liu C R. The influence of material models on finite simulation of machining[J].{H}Journal of Manufacturing Science and Engineering,2004,(04):849-857.

二级参考文献18

  • 1汪文津,王太勇,范胜波,罗珺,李娜.车削过程切削力的计算机数值仿真[J].机械强度,2006,28(5):725-728. 被引量:11
  • 2Klamecki B E. Incipient chip formation in metal cutting—A three dimensional finite analysis [ D ]. Urbana: University of Urbana, Champaign, 1973.
  • 3Lajczok M R. A study of some aspects of metal cutting by the finite element method [ D ]. Raleigh : North Carolina State U- niversity, 1980.
  • 4Movahhedy M, Gadala M S, Altintas Y. Simulation of the or- thogonal metal cutting process using an arbitrary Lagrangian- Eulerian finite element method [ J ]. Journal of Materials Pro- cessing Technology,2000,103 (2) :267 - 275.
  • 5Ohbuchi Y, Obikawa T. FEM simulation of abrasive grain machining processes—Chip formation with large negative rake[ J]. Memoirs of the Faculty of Engineering, Kumamoto University ,2003,47(2) : 1 - 18.
  • 6Marusich T D, Ortiz M. Modelling and simulation of high- speed machining [ J ]. International Journal for Numerical Methods in Engineering, 1995,38(21 ) :3675 - 3594.
  • 7Ozel T, Ahan T. Determination of workpiece flow stress and friction at the chip-t0ol contact for high-speed cutting [ J ]. International Journal of Machine Tools & Manufacture, 2000,40( 1 ) :133 - 152.
  • 8Hou Qingyu, Wang Jingtao. A modified Johnson-Cook consti- tutive model for Mg-Gd-Y alloy extended to a wide range of temperatures [ J ]. Computational Materials Science,2010,50 ( 1 ) : 147 - 152.
  • 9Hopkinson B. A method of measuring the pressure produced in the detonation of explosives or by the impact of bullets [ J ]. Philos Trans : A, 1914,213 (2) :437- 452.
  • 10Davies R M. A critical study of Hopkinson pressure bar [ J I. Phil Trans R Soc, 1948, A240 : 375 - 457.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部