期刊文献+

基于Curvelet多方向差和多尺度积的图像去噪 被引量:8

Image denoising based on multi-directional difference and multiscale products of curvelet transform
原文传递
导出
摘要 为滤除自然图像中的高斯白噪声并保持边缘、纹理信号,引入了Curvelet变换系数在方向间、尺度间和尺度内的相关性,提出了一种基于Curvelet系数相关性的多方向差和多尺度积图像去噪方法.首先根据图像纹理在Curvelet变换各尺度各子带上的方向信息,构造在方向倍增相邻尺度上的方向差,捕获方向间相关性,然后利用尺度间系数的多尺度积体现尺度间相关性,同时对各子带内系数采用局部聚集性反映尺度内相关性,最后综合这些相关性在图像真实信号和噪声上的不同表现来区分信号和噪声.实验结果表明:该方法具有更优的边缘保持和视觉平滑效果,与Curvelet阈值收缩方法相比,不但峰值信噪比有所提高,而且也较好地抑制了划痕现象. An multi-directional difference and multi-scale products based on correlation method for im- age denoising was proposed to smooth out the Gaussian white noise and preserve edges and texture in image, using the dependencies among direction, inter-scale and intra-seale in the curvelet domain. First, multi-directional differences were constructed to capture the direction correlation on the adja- cent scales whose directions were double-increased, according to the direction information of image texture. Then, multi-scale products between scales and local aggregation in each sub-band were re- spectively utilized to represent the inter-scale and intra-scale correlations. Finally, true signals and noise were distinguished on the basis of these correlations. Experimental results indicate the new method has advantages in edge preservation and smooth effects. Compared with the curvelet shrinkage algorithm, this method can not only improve the peak signal to noise ratio (PSNR) but also suppress the scratches phenomena in the image denoising.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第12期39-43,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重点基础研究发展计划资助项目(2013CB329402) 中央高校基本科研业务费专项资金资助项目(K5051203002 K5051203007) 国家自然科学基金资助项目(61072106 61077009 61075041) 高等学校学科创新引智计划资助项目(111计划)(B07048) 教育部'长江学者和创新团队发展计划'资助项目(IRT1170)
关键词 图像去噪 高斯噪声 白噪声 相关性方法 收缩 图像纹理 image denoising Gaussian noise white noise ~ correlation methods shrinkage image texture
  • 相关文献

参考文献3

二级参考文献23

  • 1周龙.小波分析在粮虫图像去噪及边缘检测中的应用[J].华中科技大学学报(自然科学版),2005,33(5):52-54. 被引量:8
  • 2Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising[J]. ACM Transactions on Graphics, 2003, 22(3) : 950-953.
  • 3Kim S. PDE-based image restoration: a hybrid model and color image denoising[J]. IEEE Transactions on Image Processing, 2006, 15(5) : 1163-1173.
  • 4Dabov K, Foi A, Katkovnik V, et al. Image denois- ing by sparse 3-D transform-domain collaborative fil tering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
  • 5Stein C M. Estimation of the mean of a multivariate normal distribution[J]. The Annals of Statistics, 1981, 9(6): 1135-1150.
  • 6Blu T, Luisier F. The SURE-LET approach to image denoising[J]. IEEE Transactions on Image Process- ing, 2007, 16(11): 2778-2786.
  • 7Luisier F, Blu T, SURE-LET multichannel image de- noising: interscale orthonormal wavelet thresholding[J]. IEEE Transactions on Image Processing, 2008,17: 482-492.
  • 8You X, Du L, Zhang Y, et al. Significant difference watermarking using new non-tensor wavelet filter banks[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3271-3284.
  • 9You X, Bao Z, Xing C, et al. Image denoising by using nonseparable wavelet filters and two-dimension- al principal component analysis[J]. Optical Engineer- ing, 2008, 47(10): 107002.
  • 10He Q, You X, Wang P S, et al. An image water- marking scheme using non-tensor wavelets[C]//Pro- ceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition(ICWAPR' 07). Beijing:IEEE Press, 2007: 350-355.

共引文献2

同被引文献71

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部