期刊文献+

基于特征域奇异值分解的图像质量评价 被引量:1

Image quality assessment based on singular value decomposition in multiple feature domains
下载PDF
导出
摘要 为了克服传统图像质量评价算法泛化能力不足的问题,提出一种基于特征域奇异值分解的图像质量预测模型.首先从多个特征域(图像及其梯度和相位一致性)中分别比较图像局部的奇异向量和奇异值差异完成视觉特征提取,随后利用支持向量机完成图像感知质量预测.实验表明:所提出的基于支持向量机而构建图像质量预测模型不仅在单个图像数据库上的表现要优于传统的图像质量评价算法,而且有着良好的跨数据库性能变现,表现出较高的泛化性;通过用集成学习器取代单个支持向量机,图像感知质量预测模型的泛化能力还可以进一步提高. To solve the insufficient generalization ability of the traditional image quality assessment (IQA) algorithms, an image quality predication (IQP) model based on the singular value decomposition in multiple feature domains was proposed. The visual features were extracted by comparing the difference of sin gular values and singular vectors between the corresponding local neighborhoods of reference and test images in the multiple feature domains (images and their gradient and phase congruency maps) , and then fed into a support vector machine (SVM) to predict the perceptual quality of images. Subsequent experiments show that, proposed IQP model built on the SVM not only has a better performance than the traditional IQA algo rithms on individual image databases, but also exhibits good generalization ability by having a good across-im- age-database performance. By replacing the SVM with an ensemble learner, the generalization ability of the proposed IQP model can be improved further.
作者 崔力 浩明
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第12期1665-1669,1675,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(61103062) 人事部留学人员科技活动择优资助项目 教育部留学回国人员科研启动基金资助项目
关键词 人眼视觉系统 奇异值分解 支持向量机 human visual system singular value decomposition support vector machine
  • 相关文献

参考文献2

二级参考文献20

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2佟雨兵,胡薇薇,杨东凯,张其善.视频质量评价方法综述[J].计算机辅助设计与图形学学报,2006,18(5):735-741. 被引量:47
  • 3Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4Daly S.The visible difference predictor:an algorithm for the assessment of image fidelity,digital images and human vision[M].Massachusetts,U S A:The MIT Press,1993:179 -206
  • 5Heeger D J,Teo T C.A model of perceptual image fidelity[C]//Proceeding of 1995 Internation Conference of Image Processing.Washington:[s.N.],343-345
  • 6Watson A B,Solomon J A.Model of visual contrast gain control and pattern masking[J].Journal of Optical Society of America,1997,14(9):2379-2391
  • 7Vanden C J,Branden Lambrecht,Costantini D M,et al,Quality assessment of motion rendition in video coding[J].IEEE Trans Circuits and Systems for Video Tech,1999,9(5):766-782
  • 8Zhou Wang,Liang Lu,Alan C Bovik.Video quality assessment using structural distortion measurement[C]// Proceeding of 2002 Intemation Conference of Image Processing.Rochester,New York:[s.N.],Ⅲ-65-68
  • 9RRNR-TV group test plan.Draft version 1.7[EB/OL].2004[2005 -01-10].http://www.vqeg.org
  • 10Wang Zhou,Alan C Bovik,Eero P.Simoncelli.Handbook of image and video processing[M].2 nd ed,New York:Academic Press,2005

共引文献35

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部