期刊文献+

New schemes with fractal error compensation for PDE eigenvalue computations 被引量:6

New schemes with fractal error compensation for PDE eigenvalue computations
原文传递
导出
摘要 With an error compensation term in the fractal Rayleigh quotient of PDE eigen-problems,we propose a new scheme by perturbing the mass matrix Mhto Mh=Mh+Ch2mKh,where Khis the corresponding stif matrix of a 2m 1 degree conforming finite element with mesh size h for a 2m-order self-adjoint PDE,and the constant C exists in the priority error estimationλh jλj^Ch2mλ2j.In particular,for Laplace eigenproblems over regular domains in uniform mesh,e.g.,cube,equilateral triangle and regular hexagon,etc.,we find the constant C=I h 1Mh2 hKh and show that in this case the computation accuracy can raise two orders,i.e.,fromλh jλj=O(h2)to O(h4).Some numerical tests in 2-D and 3-D are given to verify the above arguments. With an error compensation term in the fractal Rayleigh quotient of PDE eigen-problems,we propose a new scheme by perturbing the mass matrix Mhto Mh=Mh+Ch2mKh,where Khis the corresponding stif matrix of a 2m 1 degree conforming finite element with mesh size h for a 2m-order self-adjoint PDE,and the constant C exists in the priority error estimationλh jλj^Ch2mλ2j.In particular,for Laplace eigenproblems over regular domains in uniform mesh,e.g.,cube,equilateral triangle and regular hexagon,etc.,we find the constant C=I h 1Mh2 hKh and show that in this case the computation accuracy can raise two orders,i.e.,fromλh jλj=O(h2)to O(h4).Some numerical tests in 2-D and 3-D are given to verify the above arguments.
作者 SUN JiaChang
出处 《Science China Mathematics》 SCIE 2014年第2期221-244,共24页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos.60970089,61170075 and 91230109)
关键词 PDE eigenvalues computation generalized matrix eigen-problem discrete Rayleigh quotient 偏微分方程 特征值问题 误差补偿 计算精度 分形 等边三角形 本征问题 质量矩阵
  • 相关文献

参考文献3

二级参考文献10

共引文献35

同被引文献16

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部