摘要
With an error compensation term in the fractal Rayleigh quotient of PDE eigen-problems,we propose a new scheme by perturbing the mass matrix Mhto Mh=Mh+Ch2mKh,where Khis the corresponding stif matrix of a 2m 1 degree conforming finite element with mesh size h for a 2m-order self-adjoint PDE,and the constant C exists in the priority error estimationλh jλj^Ch2mλ2j.In particular,for Laplace eigenproblems over regular domains in uniform mesh,e.g.,cube,equilateral triangle and regular hexagon,etc.,we find the constant C=I h 1Mh2 hKh and show that in this case the computation accuracy can raise two orders,i.e.,fromλh jλj=O(h2)to O(h4).Some numerical tests in 2-D and 3-D are given to verify the above arguments.
With an error compensation term in the fractal Rayleigh quotient of PDE eigen-problems,we propose a new scheme by perturbing the mass matrix Mhto Mh=Mh+Ch2mKh,where Khis the corresponding stif matrix of a 2m 1 degree conforming finite element with mesh size h for a 2m-order self-adjoint PDE,and the constant C exists in the priority error estimationλh jλj^Ch2mλ2j.In particular,for Laplace eigenproblems over regular domains in uniform mesh,e.g.,cube,equilateral triangle and regular hexagon,etc.,we find the constant C=I h 1Mh2 hKh and show that in this case the computation accuracy can raise two orders,i.e.,fromλh jλj=O(h2)to O(h4).Some numerical tests in 2-D and 3-D are given to verify the above arguments.
基金
supported by National Natural Science Foundation of China (Grant Nos.60970089,61170075 and 91230109)