期刊文献+

长序列实值离散Gabor变换窗函数的快速求解算法

Fast algorithm for window computation in real-valued discrete Gabor transform for long sequences
下载PDF
导出
摘要 为了降低在无限(长)序列实值离散Gabor变换(RDGT)中利用分析窗与综合窗之间的双正交关系计算窗函数的复杂度,提出了一种基于离散Hartley变换(DHT)的快速求解算法。通过将双正交关系式写成离散Hartley变换的形式,原方程组可被分解成若干个独立的子方程组以降低计算的复杂度。实验结果也验证了提出的快速算法的正确性和有效性。 To reduce the high complexity of the window computation using the biorthogonal relationship between the analysis window and the synthesis window in the Real-valued Discrete Gabor Transform (RDGT) for infinite or long sequences, this paper presents a fast algorithm based on the Discrete Hartley Transform(DHT). By transforming the equa- tion set of the biorthogonal relationship into the form of DHT, the equation set can be separated into several independent sub-equation sets so that the computational complexity can be reduced. The experimental results also indicate that the pro- posed fast algorithm is correct and effective.
作者 陶星月 陶亮
出处 《计算机工程与应用》 CSCD 2014年第2期194-197,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61071169)
关键词 长序列 实值离散GABOR变换 快速求解算法 long sequences Real-valued Discrete Gabor Transform(RDGT) fast algorithm
  • 相关文献

参考文献12

  • 1Gabor D.Theory of communication[J].J Inst Electr Eng, 1946,93(3) :429-457.
  • 2Wexler J,Raz S.Discrete Gabor expansions[J].Signal Pro- cessing, 1990,21 (3) : 207-220.
  • 3Qian S,Chen D.Discrete Gabor transform[J].IEEETrans- actions on Signal Processing, 1993,41 (7) : 2429-2438.
  • 4Morris J M,Liu Y.Discrete Gabor expansion of discrete- time signals in 12 (Z) via frame theory[J].IEEE Signal Processing Magazine, 1994,40(2) : 151-181.
  • 5Daugman J.Complete discrete 2-D Gabor transform by neural networks for image analysis and compression[J]. IEEE Trans on Acoust, Speech, Signal Processing, 1988, 36(7) : 1169-1179.
  • 6Lu C, Joshi S, Morris J M.Parallel lattice structure of block time-recursive generalized Gabor transforms[J].Sig- nal Processing, 1997,57(2) : 195-203.
  • 7Tao L, Kwan H K.Novel DCT-based real-valued dis- crete Gabor transform and its fast algorithms[J].IEEE Transactions on Signal Processing, 2009,57 (6) : 2151-2164.
  • 8Tao L, Kwan H K.Multirate-based fast parallel algo- rithms for 2-D DHT-based real-valued discrete Gabor transform[J].IEEE Transactions on Image Processing, 2012,21(7),3306-3311.
  • 9Tao L, Kwan" H K.Real discrete Gabor expansion for finite and infinite sequences[C]//Proceedings of the 2000 IEEE International Symposium on Circuits and Sys- tems, Geneva, Switzerland, 2000,4 : 637-640.
  • 10袁书萍,陶亮.利用多抽样率滤波实现DHT的实值离散Gabor变换[J].计算机工程与应用,2011,47(12):102-105. 被引量:1

二级参考文献8

  • 1Gabor D.Theory of communication[J].J Inst Electr Eng,1946,93(3):429-457.
  • 2Wang L,Chan C T,Lin W C.An efficient algorithm to compute the complete set of discrete Gabor coefficients[J].IEEE Transafions on Image Processing,1994,3(1):87-92.
  • 3Wexler J,Raz S.Discrete Gabor expansions[J].Signal Processing,1990,21(3):207-220.
  • 4Qian S,Chen D.Siscrete Gabor transform[J].IEEE Transactions on Signal Processing,1993,41(7):2429-2438.
  • 5Morris J M,Liu Y.Discrete Gabor expansion of discrete-time signals in p(Z)via frame theory[J].IEEE Signal Processing Magazine,1994,40(2):151-181.
  • 6Lu C,Joshi S,Morris J M.Parallel lattice structure of block timerecursive generalized Gabor transforms[J].Signal Processing,1997,57(2):195-203.
  • 7Tao L,Kwan H K.Real discrete Gabor expansion for finite and infinite sequences[C]/Proceedings of the 2000 IEEE International Symposium on Circuits and Systems,Geneva,Switzerland,2000,4:637-640.
  • 8陶亮,庄镇泉.Univied Parallel Lattice Structures for Block Time—Recursive Real—Valued Duiscrete Gabor Transforms[J].Journal of Computer Science & Technology,2003,18(1):90-96. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部