摘要
Geometric structures, stabilities, and electronic properties of SrSin(n = 1–12) clusters have been investigated using the density-functional theory within the generalized gradient approximation. The optimized geometries indicate that one Si atom capped on SrSin 1structure and Sr atom capped Sinstructure for difference SrSinclusters in size are two dominant growth patterns. The calculated average binding energy, fragmentation energy, second-order energy difference, the highest occupied molecular orbital, and the lowest unoccupied molecular orbital(HOMO–LUMO) gaps show that the doping of Sr atom can enhance the chemical activity of the silicon framework. The relative stability of SrSi9is the strongest among the SrSinclusters. According to the mulliken population and natural population analysis, it is found that the charge in SrSin clusters transfer from Sr atom to the Sinhost. In addition, the vertical ionization potential, vertical electron affinity, and chemical hardness are also discussed and compared.
Geometric structures, stabilities, and electronic properties of SrSin(n = 1–12) clusters have been investigated using the density-functional theory within the generalized gradient approximation. The optimized geometries indicate that one Si atom capped on SrSin 1structure and Sr atom capped Sinstructure for difference SrSinclusters in size are two dominant growth patterns. The calculated average binding energy, fragmentation energy, second-order energy difference, the highest occupied molecular orbital, and the lowest unoccupied molecular orbital(HOMO–LUMO) gaps show that the doping of Sr atom can enhance the chemical activity of the silicon framework. The relative stability of SrSi9is the strongest among the SrSinclusters. According to the mulliken population and natural population analysis, it is found that the charge in SrSin clusters transfer from Sr atom to the Sinhost. In addition, the vertical ionization potential, vertical electron affinity, and chemical hardness are also discussed and compared.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos. I 1304167 and 51374132), the Postdoctoral Science Foundation of China (Grant No. 20110491317), the Natural Science Foundation of Henan Province, China (Grant Nos. 2011B140015 and 132300410290), and the Young Core Instructor Foundation of Henan Province, China (Grant No. 2012GGJS- 152).