期刊文献+

吸附强化甲醇水重整制氢工艺条件研究 被引量:1

Adsorption enhanced steam reforming of methanol for hydrogen production
下载PDF
导出
摘要 研究了吸附增强技术对甲醇水重整制氢过程的作用效果.对商业水滑石、Ca基吸附剂、负载型MgO吸附剂3种吸附剂进行了CO2-TPD考察.考察了反应温度、液空速、水醇摩尔比对甲醇水重整制氢的影响.在此基础上,选择Ca基吸附剂,利用响应面法,进行了吸附强化甲醇水重整制氢条件考察.研究结果表明,适宜的工艺条件为反应温度245~ 247℃,液空速0.30~0.31 h-1,水醇摩尔比3.15 ~3.19.在此条件下,与无强化的甲醇水重整制氢相比,氢产率为2.528 mol/mol,提高了32.77%,氢含量为92.1451%,提高了26.49%,氢产率相同则反应温度可降低57℃,是一条高效节能减排的制氢路线. Adsorption enhancement technique is studied in the process of methanol reforming hydrogen production. Three adsorbents are investigated CO2-TPD, which are commercial hydrotalcite, Ca sorbents and the loading-type MgO adsorbent. The effects of temperature ,liquid space velocity and water/alcohol on the reaction characteristics of hydrogen generation from methanol steam reforming are studied. On this basis, the operation conditions of adsorption enhanced steam reforming of methanol is optimized by selecting the Ca based sorbent using response surface methodology. The results show that the optimum conditions for hydrogen generation using adsorption enhanced reforming of methanol are as follows :245 - 247℃ of the temperature,O. 3 - O. 31 h i of liquid space velocity and 3. 15 - 3. 19 tool/tool of the ratio of the water to methanol. Under these conditions, hydrogen yield and hydrogen content is 2. 528 mol/mol and 92. 1451%, which is increased by 32. 77% and 26. 49% ,respectively,in comparison with hydrogen production from methanol steam reforming without enhanced effect. Most importantly, with the same hydrogen yield, the reaction temperature can be decreased by 57℃ ,which is a highly effective energy-saving and emission-reduction route for hydrogen production.
出处 《现代化工》 CAS CSCD 北大核心 2014年第1期129-133,共5页 Modern Chemical Industry
基金 辽宁省教育厅创新团队项目(2008T159)
关键词 甲醇 吸附强化 制氢 吸附剂 methanol enhanced adsorption hydrogen production adsorbent
  • 相关文献

参考文献6

二级参考文献21

  • 1吴素芳,T.H.Beum,J.I.Yang,J.N.Kim.The Characteristics of a Sorption-enhanced Steam-Methane Reaction for the Production of Hydrogen Using CO_2 Sorbent[J].Chinese Journal of Chemical Engineering,2005,13(1):43-47. 被引量:15
  • 2李振山,蔡宁生,黄煜煜,韩海锦.CaO循环吸收CO_2的实验研究[J].燃烧科学与技术,2005,11(4):379-383. 被引量:28
  • 3黄煜煜,李振山,蔡宁生.高温CO_2吸附/吸收剂的研究进展[J].热能动力工程,2005,20(6):557-561. 被引量:21
  • 4KWON S H.Hydrogen production alternatives in an IGCC plant[J].Hydrocarbon Processing,1999,78 (4):73-78.
  • 5WILLIAMS R.Hydrogen production[P].U S:1938202,1933-12-05.
  • 6GORIN E,RETALLICK W B.Method for the production of hydrogen[P].U S:3108857,1963-10-29.
  • 7HAN C,HARRISON D P.Simultaneous shift and carbon dioxide separation for the direct production of hydrogen[J].Chem Eng Sci,1994,49(24):5875-5883.
  • 8BALASUBRAMANIAN B,ORTIZ A L,KAYTAKOGLU S,HARRISON D P.Hydrogen from methane in a single-step process[J].Chem Eng Sci,1999,54(15-16):3543-3552.
  • 9ORTIZ A L,HARRISON D P.Hydrogen production using sorption-enhanced reaction[J].Ind Eng Chem Res,2001,40(3):5102-5109.
  • 10李振山,黄煜煜,蔡宁生,赵旭东.钙基二氧化碳吸收剂循环反应特性[A].中国工程热物理学会编,第十一届中国工程热物理学会年会燃烧学分会论文集[C].北京:中国工程热物理学会出版,2005:956-960.

共引文献26

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部