摘要
基于整数环Z n上圆锥曲线的多重签名思想,提出了一种高效的整数环Z n上圆锥曲线的多重签密方案.在基于大整数分解和圆锥曲线离散对数的双重困难问题下对方案的安全性进行了证明.该方案中的签密和解签密运算是在圆锥曲线上进行的,因此明文嵌入方便,求逆简单,元素阶的计算及曲线上点的运算均更加容易.与现有方案的效率进行对比,提出的多重签密方案在信息运算量方面有极大的改进.
A scheme for efficient multiple signcryption on the conic curve over the ring Zn is presented based on multiple digital signature. The security of the proposed scheme is proved based on the two hard problems of large integer faetorization and discrete logarithm on conic curve. As the signeryption and designcryption are calculated on conic curve, plaintexts can be embedded easily, and in inverse, the element order and points' operation on conic curve over can be calculated more simply and easily in the pro- posed scheme. Compared with the exiting scheme in efficiency, the proposed scheme is greatly improved in information computation.
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2013年第6期23-26,共4页
Journal of Beijing University of Posts and Telecommunications
基金
国家科技重大专项项目(2012ZX03002003)
中央高校基本科研业务费专项资金项目(K5051201003)
国家自然科学基金项目(61303216)
中国博士后科学基金资助项目(2013M542328)
陕西省教育厅专项科研基金项目(09Jk803)
咸阳师范学院专项科研基金项目(11XSYK305)
关键词
签密
多重签密
圆锥曲线
大整数分解
离散对数
signeryption
multiple signeryption
conic curve
large integer factorization
discrete logarithm