期刊文献+

基于奇异摄动法的降阶模型对系统稳定性的影响 被引量:1

Influence of Reduced-model Based on Singular Perturbation Method on System Stability
下载PDF
导出
摘要 电力系统含有大量非线性高阶的数学模型,电力系统稳定性分析时,不可避免地要采用简化的系统模型,文章首先对电力系统动态负荷模型和发电机模型进行了研究并进一步推导变形,然后采用奇异摄动法中多重时间尺度的思想将非线性的电力系统负荷模型分解成不同时间尺度下的几个子系统,并将高阶模型降阶为低阶模型,最后通过仿真得到一系列数据验证了奇异摄动法降阶后的模型更接近完整模型,所得结果偏差更小。摄动法使模型降阶有了依据,避免了经验降阶带来的较大误差。 Power system contains a large number of non- linear mathematical models. In order to simplify the analysis, this paper firstly derives and deforms the power system dynam- ics load model and generator model. Then the nonlinear power system load models are decomposed into several subsystems of different time scales by the thought of multiple time scales be- longing to the perturbation method, and the high-level model is reduced to the low-level model. Finally, a series of data obtained by simulation verify that the reduced-order model is closer to completion after the singular perturbation method is reduced and the deviation in results is small. Perturbation method provides the basis of model reduction, avoiding large error from the expe- rience reduction.
作者 韩俊秀
出处 《电力学报》 2013年第6期476-480,共5页 Journal of Electric Power
关键词 完整模型 降阶模型 奇异摄动法 时间尺度 动态负荷模型 发电机模型 full model reduction model singular per-turbation method time scale dynamic load model generator model
  • 相关文献

参考文献5

二级参考文献35

  • 1[1]Kokotovic P V, Sauer P W. Integral Manifold as a Tool for Reduced-order Modeling of Nonlinear System: A Synchronous Machine Case Study. IEEE Trans on Circuit and Systems, 1989, 36(3): 403~410
  • 2[2]Sauer P W, Ahmed-Zaid S, Pai M A. Systematic Inclusion of Stator Transient in Reduced Order Synchronous Machine Models. IEEE Trans on Power Apparatus and Systems, 1984, 6(6): 1348~1354
  • 3[3]Chow J H. Time-scale Modeling of Dynamic Networks with Applications to Power Systems. In: Lecture Notes in Control and Information Sciences. Berlin-Heidelburg-New York: Springer-Verlag, 1982
  • 4[4]Avramovic B, Kokotovic P V, Winkelman J R, et al. Area Decomposition for Electro-mechanical Models of Power Systems. Automatica, 1980, 16(4): 637~648
  • 5[5]Sauer P W, LaGesse D J, Ahmed-Zaid S, et al. Reduced Order Modeling of Interconnected Multimachine Power Systems Using Time-scale Decomposition. IEEE Trans on Power Systems, 1987, 5(2): 310~319
  • 6[8]Kokotovic P V, O'Malley R E, Sannuti P. Singular Perturbation and Order Reduction in Control Theory--An Overview. In: IEEE Press on Singular Perturbations in System and Control. 1986. 3~12
  • 7[9]Sobolev V A. Integral Manifolds and Decomposition of Singularly Perturbed Systems. System and Control Letters, 1984, 5(3): 169~179
  • 8[10]Ghorbel F, Spong M W. Integral Manifolds of Singularly Perturbed Systems with Application to Rigid-link Flexible-joint Multi-body Systems. International Journal of Non-linear Mechanics, 2000, 35(1): 133~155
  • 9Bartolini G, Ferrara A, Usai E. Chattering avoidance by second order sliding mode control[J].IEEE Transactons on Antomatic Control,1998, 43(2): 241-246.
  • 10Bartolini G, Ferrara A, Usai E. Output tracking control of uncertain nonlinear second-order systems[J]. Autommica, 1997, 33(12):2203-2212.

共引文献46

同被引文献8

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部