期刊文献+

高可扩展可容错的无网格/粒子程序petaPar及其测试

A Scalable and Fault Tolerant Particle Simulation Code
原文传递
导出
摘要 petaPar粒子模拟程序面向千万亿次级计算,在统一框架下实现两种广受关注的粒子模拟算法:光滑粒子流体动力学(Smoothed Particle Hydrodynamics,SPH)和物质点法(Material Point Method,MPM)。代码支持多种材料模型、强度模型和失效模型,适合模拟大变形、高应变率和流固耦合问题。支持纯MPI和MPI+X混合两种并行模型。系统具有可容错性,支持无人值守变进程重启。在Titan上测试表明,petaPar可线性扩展到26万CPU核,SPH和MPM算法并行效率相对8 192核分别为87%和90%。 Powered by petaflop supercomputers, numerical simulation steps into a completely new era, a new generation of simulation code is expected to explore the parallelism of hundreds of thousands of processor cores, petaPar is targeted at petascale particle simulation on petaflop systems. It unifies two most popular and powerful particle methods, the Smoothed Particle Hydrodynamics (SPH) and the Material Point Method (MPM). The code supports a number of material models, strength models and failure models, and is suitable for large deformation, high strain rates and fluid-solid interaction. Parallel implementations support both flat MPI and MPI+X hybrid parallel models. The code is highly fault tolerant in the sense that it can support unattended process restart from any time step. Scalability tests on Titan shows that the code is linearly scaled up to 260K CPUcores and delivers 87% and 90% parallel efficiency relative to 8 192 CPU cores for MPM and SPH respectively.
作者 黎雷生 田荣
出处 《科研信息化技术与应用》 2013年第5期3-9,共7页 E-science Technology & Application
关键词 千万亿次计算 粒子模拟 SPH MPM 可扩展性 可容错性 petascale computing particle simulation SPH MPM scalability fault tolerance
  • 相关文献

参考文献7

  • 1Schroeder B,Gibson G A. A large-scale study of failures in high-performance computing systems[A].2006.249-258.
  • 2Liu Y. Reliability-Aware Optimal Checkpoint/Restart Model in High Performance Computing[D].Louisiana USA,2007.
  • 3Sancho J C,Barker K J,Kerbyson D J. Quantifying the Potential Benefit of Overlapping Communication and Computation in Large-Scale Scientific Applications[A].2006.
  • 4Bongo L A,Vinter B,Anshus O J. Using Overdecomposition to Overlap Communication Latencies with Computation and Take Advantage of SMT Processors[A].2006.239-247.
  • 5Cicotti P. Tarragon:a Programming Model for Latency-Hiding Scientific Computations[D].San Diego,USA:University of California,2011.
  • 6Idomura Y,Nakata M,Yamada S. Communication overlap techniques for improved strong scaling of gyrokinetic Eulerian code beyond 100k cores on the K-computer[A].2012.1373-1374.
  • 7Schloegel K,Karypis G,Kumar V. Parallel static and dynamic multi-constraint graph partitioning[J].Concurr Comp-Pract E,2002.219-240.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部