期刊文献+

基于社交网络的信息推荐系统 被引量:13

Recommendation System Based on Social Network
下载PDF
导出
摘要 随着互联网的快速发展,从海量信息中获取感兴趣的信息越来越困难。推荐系统正是解决这一难题最热门的技术之一。数据稀疏性问题是当前推荐系统所面临的主要问题之一。为了缓解数据稀疏性的问题,本文借助社交网络,提出了一种融合用户社交网络的推荐算法,将用户在社交网络中的亲密度引入推荐系统。在实验部分,本文采用百度电影推荐算法创新大赛的数据集,设计实验验证了提出算法的有效性。实验结果表明,本文提出的算法能够有效地缓解传统协同过滤算法面临的数据稀疏性问题,明显提高预测的准确性。 With the rapid development of the Internet, people are in a time of explosive growth of information. It's more and more dififcult for people to ifnd out the needed information. Recommendation system is currently the most popular and effective techniques to solve this problem. The paper proposes one recommendation algorithm based on social network. With the help of the social network, the algorithm introduces the social intimate degree into the recommendation system. The paper designs experiment using the Baidu movie recommendation algorithm contest's dataset. Experiments show that social and rating cross-domain recommendation system can improve prediction accuracy of the system.
作者 李善涛 肖波
出处 《软件》 2013年第12期41-45,共5页 Software
关键词 数据挖掘 个性化推荐 社交网络 协同过滤 Date mining Recommendation System Social Networking Collaborative Filtering
  • 相关文献

参考文献6

二级参考文献114

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2黄光球,靳峰,彭绪友.基于兴趣度的协同过滤商品推荐系统模型[J].微电子学与计算机,2005,22(3):5-8. 被引量:20
  • 3刘平峰,聂规划,陈冬林.电子商务推荐系统中推荐策略的自适应性[J].计算机工程与应用,2007,43(4):23-25. 被引量:5
  • 4刘平峰,聂规划,陈冬林.基于知识的电子商务智能推荐系统平台设计[J].计算机工程与应用,2007,43(19):199-201. 被引量:19
  • 5Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 7Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 8Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 9Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 10Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html

共引文献704

同被引文献80

引证文献13

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部