期刊文献+

Hadoop平台的集群故障监控的研究与实现 被引量:8

The Research and Implement of Fault Monitoring on Hadoop Platform
下载PDF
导出
摘要 使用Hadoop构建的云平台已经得到广泛使用,如Amazon、Yahoo、Facebook等。集群的稳定性和可靠性对于云平台的服务质量有着重要的影响,随着企业信息化在生产实时检测、海量存储和科学分析决策等方面的需求不断提升,集群故障监控也越来越重要。PDM(Integrated Parallel Mining)是中国移动的商务智能应用需求为背景,旨在针对海量数据提供高效、准确、便捷的数据分析服务,能够对Hadoop集群进行性能监控并且进行故障告警是非常重要的。Ganglia和Nagios在集群故障监控方面各有优势,将两者的优势结合,结合企业项目设计出了一个相对完整的集群故障监控平台。 The cloud platform based on hadoop has been widely used, such as Amazon, Yahoo, Facebook and so on. Stablity and reliability of the cluster is very signiifcant for the serivce quality of the cloud platform. With the needs of enterprise information in real-time detection, the mass storage and scientiifc analysis improve, the fault monitorning of the cluster is also becoming increasingly important. PDM(Integrated Parallel Mining) is based on the needs of China Mobile's business intelligence applications, it is designed to provide efifcient, accurate and convenient data analysis services for massive data. It’s very meaningful to carry out the performance and fault alarm of the hadoop platform. Ganglia and Nagios have their own advantages in the cluster fault monitoring, to combine the advantages of both, I designed a relatively complete cluster fault monitoring platform combined enterprise project.
作者 朱娜娜
出处 《软件》 2013年第12期73-77,共5页 Software
关键词 计算机应用 监控 故障 Hadoop Ganglia Nagios Computer Application Hadoop Ganglia Nagios monitoring fault
  • 相关文献

参考文献5

  • 1王庆福.网站建设中数据库技术与WEB技术的应用对比研究[J].软件,2013,34(2):86-87. 被引量:16
  • 2吕伟春,胡洪新,汤剑.基于NagiOS的网络监控监控系统研究[J].电脑知识和技术,2010,6(1),48-51.
  • 3徐焕宇,孙权森,夏德深.基于NLTV的消除不规则采样遥感图像复原方法[J].新型工业化,2012,2(3):44-53.
  • 4Sushil Bhardwaj, Leena Jain, Sandeep Jain. Cloud Computing: A Study of Infi'astructure as a Service [J]. International Journal of Engineering and Information Technology, 2010, 2(1): 60 ~ 63.
  • 5Dejan. Opennebula: A Cloud Management Tool. Intemet Computing [J]. Intemet Computing, 2011, 15(2): 11 ~ 14.

二级参考文献2

共引文献15

同被引文献89

  • 1张栋梁,谭永杰.云计算中负载均衡优化模型及算法研究[J].软件,2013,34(8):52-55. 被引量:17
  • 2Sanjay Ghemawat, Howard Gobioff, Shun-TAK Leung. The Google file system. In Proceedings of the nineteenth ACM symposium on Operating systems principles. New York: ACM, 2003: 29-43.
  • 3Apache Hadoop[EB/OL]. (2013-06-15). http:/Paadoop/apachc.org.
  • 4Capacity scheduler guide[EB/OL]. (2013-06-03)[2013-06-15]. http://hadoop.apache.org/docs/stable/capacity-scheduler.html.
  • 5Fair scheduler[EB/OL]. (2013-06-03)[2013-06-15]. http://hadoop.apache.org/docs/rl.l.2/fairscheduler.html.
  • 6BYNA S, CHEN Yong, SUN Xian-hc. A taxonomy of data prefetching mcchanisms[C]//Proc of International Symposium on Parallel Architecures, Algorithms, and Networks. Washington DC: IISEE Computer Society, 2008: 19-24.
  • 7IE Jiong, MENG Fan-jun, WANG Hai-long, ct el. Research on scheduling scheme for Hadoop clusters[C]//Pro of Procedia Computer Science. 2013: 2468-2471.
  • 8SEO S, JANG I, WOO K, et al. HPMR: prefetching and pre-shuffling in shared MapReduce computation environment[C]//Proc of IEEE International Conference on Cluster Computing. Washington DC: IEEE Computer Society, 2009: 1-8.
  • 9Matei Zaharia, Dhruba Borthakur, Joydeep SenSarma, et al. Delay schduling:a simple technique for achieving locality and fairness in cluster scheduling[C]//In Proceedings of the 5th European conference on Computer systems. New York: ACM, 2010: 265-278.
  • 10Aprigio Bezerra, PorfDio HemANdez, Antonio Espinosa, et al. Job scheduling for optimizing data locality in Hadoop clusters[C]//In Proceedings of the 20th European MPI Users' Group Meeting. New York: ACM, 2003: 271-276.

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部